Home
Class 12
MATHS
Evaluate the following integrals: int ...

Evaluate the following integrals:
`int frac{2x-1}{2x+3}dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \frac{2x-1}{2x+3} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start by rewriting the integrand \( \frac{2x-1}{2x+3} \) in a more manageable form. We can express the numerator in terms of the denominator: \[ \frac{2x-1}{2x+3} = \frac{(2x+3) - 4}{2x+3} = 1 - \frac{4}{2x+3} \] ### Step 2: Split the integral Now we can split the integral into two parts: \[ I = \int \left( 1 - \frac{4}{2x+3} \right) \, dx = \int 1 \, dx - 4 \int \frac{1}{2x+3} \, dx \] ### Step 3: Integrate the first term The integral of \( 1 \) with respect to \( x \) is simply: \[ \int 1 \, dx = x \] ### Step 4: Integrate the second term Next, we need to evaluate \( \int \frac{1}{2x+3} \, dx \). We can use the substitution method here. Let \( u = 2x + 3 \), then \( du = 2 \, dx \) or \( dx = \frac{du}{2} \). Substituting, we get: \[ \int \frac{1}{2x+3} \, dx = \int \frac{1}{u} \cdot \frac{du}{2} = \frac{1}{2} \int \frac{1}{u} \, du = \frac{1}{2} \ln |u| + C = \frac{1}{2} \ln |2x+3| + C \] ### Step 5: Combine the results Now we can combine the results of the two integrals: \[ I = x - 4 \left( \frac{1}{2} \ln |2x+3| \right) + C = x - 2 \ln |2x+3| + C \] ### Final Answer Thus, the final result of the integral is: \[ I = x - 2 \ln |2x+3| + C \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int frac{2x+3}{x^2+3x}dx

Evaluate the following integrals: int frac{x}{x^2-1}dx

Evaluate the following integrals: int frac{x^2}{1-x^3}dx

Evaluate the following integrals: int frac{2x-1}{(x-1)(x+2)(x-3)}dx

Evaluate the following integrals: int frac{x}{sqrt(x+1)}dx

Evaluate the following integrals: int frac{(x^2+2)}{x+1}dx

Evaluate the following integrals: int sqrt(frac{a+x}{a-x}dx

Evaluate the following integrals: int frac{3x-1}{sqrt(x^2+9)}dx

Evaluate the following integrals: int frac{sin^(-1)x}{(1-x^2)^(1backslash2)}dx

Evaluate the following integrals: int frac{x^2}{(x^2+a^2)(x^2+b^2)}dx