Home
Class 12
MATHS
Evaluate the following integrals: int ...

Evaluate the following integrals:
`int frac{2x+3}{x^2+3x}dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{2x + 3}{x^2 + 3x} \, dx, \] we can follow these steps: ### Step 1: Identify the Denominator and its Derivative The denominator is \( x^2 + 3x \). Let's denote it as \( f(x) = x^2 + 3x \). ### Step 2: Differentiate the Denominator Now, we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx}(x^2 + 3x) = 2x + 3. \] ### Step 3: Relate the Numerator to the Derivative Notice that the numerator \( 2x + 3 \) is exactly the derivative \( f'(x) \). This gives us a direct relationship: \[ \frac{2x + 3}{x^2 + 3x} = \frac{f'(x)}{f(x)}. \] ### Step 4: Apply the Logarithmic Integration Rule Using the property of integrals, we know that: \[ \int \frac{f'(x)}{f(x)} \, dx = \ln |f(x)| + C, \] where \( C \) is the constant of integration. ### Step 5: Substitute Back the Function Substituting back \( f(x) = x^2 + 3x \), we have: \[ \int \frac{2x + 3}{x^2 + 3x} \, dx = \ln |x^2 + 3x| + C. \] ### Final Answer Thus, the integral evaluates to: \[ \int \frac{2x + 3}{x^2 + 3x} \, dx = \ln |x^2 + 3x| + C. \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int frac{x}{x^2-1}dx

Evaluate the following integrals: int frac{2x-1}{2x+3}dx

Evaluate the following integrals: int frac{x^2}{1-x^3}dx

Evaluate the following integrals: int frac{x}{sqrt(x+1)}dx

Evaluate the following integrals: int sqrt(frac{a+x}{a-x}dx

Evaluate the following integrals: int frac{(x^2+2)}{x+1}dx

Evaluate the following integrals: int frac{2x-1}{(x-1)(x+2)(x-3)}dx

Evaluate the following integrals: int frac{3x-1}{sqrt(x^2+9)}dx

Evaluate the following integrals: int frac{x^2}{(x^2+a^2)(x^2+b^2)}dx

Evaluate the following integrals: int frac{sqrt(1+x^2)}{x^4}dx