Home
Class 12
MATHS
Evaluate the following integrals: int ...

Evaluate the following integrals:
`int frac{(x^2+2)}{x+1}dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{x^2 + 2}{x + 1} \, dx, \] we will follow these steps: ### Step 1: Polynomial Long Division Since the degree of the numerator \(x^2 + 2\) is greater than the degree of the denominator \(x + 1\), we can perform polynomial long division. 1. Divide \(x^2\) by \(x\) to get \(x\). 2. Multiply \(x\) by \(x + 1\) to get \(x^2 + x\). 3. Subtract \(x^2 + x\) from \(x^2 + 2\): \[ (x^2 + 2) - (x^2 + x) = 2 - x. \] Thus, we can rewrite the integral as: \[ I = \int \left( x + \frac{2 - x}{x + 1} \right) \, dx. \] ### Step 2: Split the Integral Now we can split the integral into two parts: \[ I = \int x \, dx + \int \frac{2 - x}{x + 1} \, dx. \] ### Step 3: Evaluate the First Integral The first integral is straightforward: \[ \int x \, dx = \frac{x^2}{2} + C_1. \] ### Step 4: Simplify the Second Integral Now we need to simplify the second integral: \[ \int \frac{2 - x}{x + 1} \, dx. \] We can split this into two separate fractions: \[ \int \frac{2}{x + 1} \, dx - \int \frac{x}{x + 1} \, dx. \] ### Step 5: Evaluate the Second Integral 1. The first part: \[ \int \frac{2}{x + 1} \, dx = 2 \ln |x + 1| + C_2. \] 2. The second part can be simplified as follows: \[ \frac{x}{x + 1} = 1 - \frac{1}{x + 1}. \] Thus, \[ \int \frac{x}{x + 1} \, dx = \int \left( 1 - \frac{1}{x + 1} \right) \, dx = \int 1 \, dx - \int \frac{1}{x + 1} \, dx. \] This gives us: \[ x - \ln |x + 1| + C_3. \] ### Step 6: Combine All Parts Now we can combine all parts of the integral: \[ I = \frac{x^2}{2} + \left( 2 \ln |x + 1| - \left( x - \ln |x + 1| \right) \right) + C. \] This simplifies to: \[ I = \frac{x^2}{2} - x + 3 \ln |x + 1| + C. \] ### Final Answer Thus, the final result for the integral is: \[ \int \frac{x^2 + 2}{x + 1} \, dx = \frac{x^2}{2} - x + 3 \ln |x + 1| + C. \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int frac{x^2}{1-x^3}dx

Evaluate the following integrals: int frac{x}{x^2-1}dx

Evaluate the following integrals: int frac{sqrt(1+x^2)}{x^4}dx

Evaluate the following integrals: int frac{dx}{1+cosx}

Evaluate the following integrals: int frac{2x-1}{2x+3}dx

Evaluate the following integrals: int frac{x}{sqrt(x+1)}dx

Evaluate the following integrals: int frac{(1+cosx)}{x+sinx}dx

Evaluate the following integrals: int frac{2x+3}{x^2+3x}dx

Evaluate the following integrals: int sqrt(frac{a+x}{a-x}dx

Evaluate the following integrals: int frac{x^2}{(x^2+a^2)(x^2+b^2)}dx