Home
Class 12
MATHS
int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3...

`int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx`

Text Solution

Verified by Experts

The correct Answer is:
`(x^(3))/(3) +C`
Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx

int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx

int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx=

Evaluate : int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx .

The value of the integral int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx is equal to (A) x^2+c (B) x^3/3+c (C) x^2/2+c (D) none of these

If y=(e^(4logx)-e^(3logx))/(e^(2logx)-e^(logx))," then: "(dy)/(dx)=

e^(x+2logx)

int(1+logx)/(x(2+log x)(3+logx))dx

int(logx)/(x(1+logx)(2+logx))dx=

int7^(x logx)(1+logx)dx=