Home
Class 12
MATHS
Evaluate the following integrals: int ...

Evaluate the following integrals:
`int frac{dx}{1+cosx}`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \frac{dx}{1 + \cos x} \), we can follow these steps: ### Step 1: Use the Trigonometric Identity We start with the identity: \[ 1 + \cos x = 2 \cos^2 \left(\frac{x}{2}\right) \] Thus, we can rewrite the integral as: \[ I = \int \frac{dx}{2 \cos^2 \left(\frac{x}{2}\right)} \] ### Step 2: Simplify the Integral This simplifies to: \[ I = \frac{1}{2} \int \sec^2 \left(\frac{x}{2}\right) dx \] ### Step 3: Integrate The integral of \( \sec^2 u \) is \( \tan u \), where \( u = \frac{x}{2} \). Therefore, we have: \[ I = \frac{1}{2} \cdot 2 \tan \left(\frac{x}{2}\right) + C \] Here, the factor of \( 2 \) comes from the derivative of \( \frac{x}{2} \). ### Step 4: Final Result Thus, the final result simplifies to: \[ I = \tan \left(\frac{x}{2}\right) + C \] ### Summary of the Steps: 1. Use the identity \( 1 + \cos x = 2 \cos^2 \left(\frac{x}{2}\right) \). 2. Rewrite the integral as \( \frac{1}{2} \int \sec^2 \left(\frac{x}{2}\right) dx \). 3. Integrate to get \( \tan \left(\frac{x}{2}\right) + C \). 4. Conclude with the final result.
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int frac{x^2}{1-x^3}dx

Evaluate the following integrals: int frac{x}{x^2-1}dx

Evaluate the following integrals: int frac{(1+cosx)}{x+sinx}dx

Evaluate the following integrals: int frac{cosx-cos^2x}{1-cosx}dx

Evaluate the following integrals: int frac{sinx+cosx}{sqrt(1+sin2x)}dx

Evaluate the following integrals: int frac{dx}{xsqrt(x^4-1)}

Evaluate the following integrals: int frac{x}{sqrt(x+1)}dx

Evaluate the following integrals: int frac{2x-1}{2x+3}dx

Evaluate the following integrals: int frac{dx}{sqrt(16-9x^2)}

Evaluate the following integrals: int sqrt(frac{a+x}{a-x}dx