Home
Class 12
MATHS
Evaluate the following integrals: int ...

Evaluate the following integrals:
`int frac{x}{sqrt(x+1)}dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \frac{x}{\sqrt{x+1}} \, dx \), we will use substitution. Here’s the step-by-step solution: ### Step 1: Choose a substitution Let \( t = \sqrt{x + 1} \). Then, squaring both sides gives: \[ x + 1 = t^2 \implies x = t^2 - 1 \] ### Step 2: Differentiate to find \( dx \) Differentiating both sides with respect to \( t \): \[ dx = 2t \, dt \] ### Step 3: Substitute in the integral Now substitute \( x \) and \( dx \) in the integral: \[ I = \int \frac{t^2 - 1}{t} \cdot 2t \, dt \] This simplifies to: \[ I = \int 2(t^2 - 1) \, dt \] ### Step 4: Simplify the integral Now distribute the 2: \[ I = 2 \int (t^2 - 1) \, dt = 2 \left( \int t^2 \, dt - \int 1 \, dt \right) \] ### Step 5: Integrate Now we can integrate each term: \[ \int t^2 \, dt = \frac{t^3}{3} \quad \text{and} \quad \int 1 \, dt = t \] Thus, \[ I = 2 \left( \frac{t^3}{3} - t \right) + C \] ### Step 6: Substitute back for \( t \) Now substitute back \( t = \sqrt{x + 1} \): \[ I = 2 \left( \frac{(\sqrt{x + 1})^3}{3} - \sqrt{x + 1} \right) + C \] This simplifies to: \[ I = \frac{2}{3} (x + 1)^{3/2} - 2\sqrt{x + 1} + C \] ### Final Answer Thus, the final result of the integral is: \[ I = \frac{2}{3} (x + 1)^{3/2} - 2\sqrt{x + 1} + C \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int frac{dx}{xsqrt(x^4-1)}

Evaluate the following integrals: int frac{3x-1}{sqrt(x^2+9)}dx

Evaluate the following integrals: int frac{dx}{sqrt(16-9x^2)}

Evaluate the following integrals: int frac{dx}{1+cosx}

Evaluate the following integrals: int frac{x}{x^2-1}dx

Evaluate the following integrals: int frac{sqrt(1+x^2)}{x^4}dx

Evaluate the following integrals: int frac{sinx+cosx}{sqrt(1+sin2x)}dx

Evaluate the following integrals: int frac{sqrtx}{sqrt(a^3-x^3)}dx

Evaluate the following integrals: int frac{2x-1}{(x-1)(x+2)(x-3)}dx

Evaluate the following integrals: int frac{2x-1}{2x+3}dx