Home
Class 12
MATHS
Evaluate the following integrals: int ...

Evaluate the following integrals:
`int sqrt(frac{a+x}{a-x}dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \sqrt{\frac{a+x}{a-x}} \, dx \), we can follow these steps: ### Step 1: Substitute \( x = a \cos \theta \) We start by substituting \( x \) with \( a \cos \theta \). This substitution is useful because it simplifies the expression under the square root. \[ dx = -a \sin \theta \, d\theta \] ### Step 2: Rewrite the integral Substituting \( x = a \cos \theta \) and \( dx = -a \sin \theta \, d\theta \) into the integral gives: \[ I = \int \sqrt{\frac{a + a \cos \theta}{a - a \cos \theta}} (-a \sin \theta) \, d\theta \] This simplifies to: \[ I = -a \int \sqrt{\frac{a(1 + \cos \theta)}{a(1 - \cos \theta)}} \sin \theta \, d\theta \] ### Step 3: Simplify the square root The expression inside the square root can be simplified: \[ \sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}} = \sqrt{\frac{2 \cos^2(\theta/2)}{2 \sin^2(\theta/2)}} = \frac{\cos(\theta/2)}{\sin(\theta/2)} \] ### Step 4: Substitute back into the integral Now substituting this back into the integral gives: \[ I = -a \int \frac{\cos(\theta/2)}{\sin(\theta/2)} \sin \theta \, d\theta \] ### Step 5: Use half-angle identities Using the identity \( \sin \theta = 2 \sin(\theta/2) \cos(\theta/2) \): \[ I = -a \int 2 \cos^2(\theta/2) \, d\theta \] ### Step 6: Integrate The integral can be computed using the identity \( \cos^2 x = \frac{1 + \cos(2x)}{2} \): \[ I = -a \int 2 \left(\frac{1 + \cos \theta}{2}\right) d\theta = -a \int (1 + \cos \theta) \, d\theta \] This results in: \[ I = -a \left( \theta + \sin \theta \right) + C \] ### Step 7: Substitute back for \( \theta \) Recall that \( \theta = \cos^{-1}\left(\frac{x}{a}\right) \). Thus, we need to express \( \sin \theta \) in terms of \( x \): \[ \sin \theta = \sqrt{1 - \cos^2 \theta} = \sqrt{1 - \left(\frac{x}{a}\right)^2} = \frac{\sqrt{a^2 - x^2}}{a} \] ### Final Result Substituting back gives: \[ I = -a \left( \cos^{-1}\left(\frac{x}{a}\right) + \frac{\sqrt{a^2 - x^2}}{a} \right) + C \] This simplifies to: \[ I = -a \cos^{-1}\left(\frac{x}{a}\right) - \sqrt{a^2 - x^2} + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int sqrt(2ax-x^2dx

Evaluate the following integrals: inte^(sqrt(x))dx

Evaluate the following integrals: int x sqrt(x+2)dx

Evaluate the following integrals: int frac{x}{x^2-1}dx

Evaluate the following Integrals. int sqrt(cot x ) dx

Evaluate the following Integrals. int sqrt(tan x) dx

Evaluate the following integrals: int frac{dx}{1+cosx}

Evaluate the following integrals: int frac{x^2}{1-x^3}dx

Evaluate the following integrals: int frac{2x-1}{2x+3}dx

Evaluate the following integrals: int frac{sqrt(1+x^2)}{x^4}dx