Home
Class 12
MATHS
Evaluate the following integrals: int ...

Evaluate the following integrals:
`int sqrt(2ax-x^2dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \sqrt{2ax - x^2} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start with the expression under the square root: \[ \sqrt{2ax - x^2} \] We can rearrange this to make it easier to work with: \[ \sqrt{-(x^2 - 2ax)} = \sqrt{-(x^2 - 2ax + a^2 - a^2)} = \sqrt{-( (x-a)^2 - a^2 )} \] This can be rewritten as: \[ \sqrt{a^2 - (x-a)^2} \] ### Step 2: Substitute to simplify the integral Now, we can set \( u = x - a \), which gives us \( du = dx \) and \( x = u + a \). The integral becomes: \[ I = \int \sqrt{a^2 - u^2} \, du \] ### Step 3: Use the standard integral formula The integral \( \int \sqrt{a^2 - u^2} \, du \) is a standard integral, and its result is: \[ \int \sqrt{a^2 - u^2} \, du = \frac{u}{2} \sqrt{a^2 - u^2} + \frac{a^2}{2} \sin^{-1}\left(\frac{u}{a}\right) + C \] ### Step 4: Substitute back to original variable Now we substitute back \( u = x - a \): \[ I = \frac{x - a}{2} \sqrt{a^2 - (x - a)^2} + \frac{a^2}{2} \sin^{-1}\left(\frac{x - a}{a}\right) + C \] ### Final Result Thus, the evaluated integral is: \[ I = \frac{x - a}{2} \sqrt{a^2 - (x - a)^2} + \frac{a^2}{2} \sin^{-1}\left(\frac{x - a}{a}\right) + C \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int x sqrt(x+2)dx

Evaluate the following integrals: inte^(sqrt(x))dx

Evaluate the following integrals int (x-3)/sqrt(3-2x-x^(2))dx

Evaluate the following integrals: int sqrt(x)(x^(3)-(2)/(x))dx

Evaluate the following Integrals. int sqrt(tan x) dx

Evaluate the following integrals: int sqrt(10-4x+x^(2))dx

Evaluate the following integral: int_0^a x/(sqrt(a^2+x^2))dx

Evaluate the following integral: int_0^2x\ sqrt(2-x)\ dx

Evaluate the following integrals int sqrt((x)/(a^(3)-x^(3)))dx