Home
Class 12
MATHS
Evaluate the following integrals: int ...

Evaluate the following integrals:
`int frac{sin^6x+cos^6x}{sin^2x cos^2x}dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{\sin^6 x + \cos^6 x}{\sin^2 x \cos^2 x} \, dx, \] we will follow these steps: ### Step 1: Simplify the numerator We can rewrite \(\sin^6 x + \cos^6 x\) using the identity for the sum of cubes: \[ \sin^6 x + \cos^6 x = (\sin^2 x)^3 + (\cos^2 x)^3 = (\sin^2 x + \cos^2 x)((\sin^2 x)^2 - \sin^2 x \cos^2 x + (\cos^2 x)^2). \] Using the identity \(\sin^2 x + \cos^2 x = 1\), we have: \[ \sin^6 x + \cos^6 x = 1 \cdot \left(\sin^4 x + \cos^4 x - \sin^2 x \cos^2 x\right). \] ### Step 2: Substitute back into the integral Now substituting this back into the integral, we get: \[ I = \int \frac{\sin^4 x + \cos^4 x - \sin^2 x \cos^2 x}{\sin^2 x \cos^2 x} \, dx. \] ### Step 3: Split the integral We can split the integral into three parts: \[ I = \int \frac{\sin^4 x}{\sin^2 x \cos^2 x} \, dx + \int \frac{\cos^4 x}{\sin^2 x \cos^2 x} \, dx - \int \frac{\sin^2 x \cos^2 x}{\sin^2 x \cos^2 x} \, dx. \] This simplifies to: \[ I = \int \tan^2 x \, dx + \int \cot^2 x \, dx - \int 1 \, dx. \] ### Step 4: Evaluate each integral Now we can evaluate each integral separately: 1. \(\int \tan^2 x \, dx = \int (\sec^2 x - 1) \, dx = \tan x - x + C_1\). 2. \(\int \cot^2 x \, dx = \int (\csc^2 x - 1) \, dx = -\cot x - x + C_2\). 3. \(\int 1 \, dx = x + C_3\). Combining these results, we have: \[ I = (\tan x - x) + (-\cot x - x) - x + C, \] which simplifies to: \[ I = \tan x - \cot x - 3x + C. \] ### Final Answer Thus, the evaluated integral is: \[ I = \tan x - \cot x - 3x + C. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following integrals. int sin x cos x (sin 2x + cos 2x) dx

Evaluate the following integrals: int (1-cos x)/(sin x) dx

Evaluate the following integrals int (dx)/(1+sin x+cos x)

Evaluate the following integrals: int ( cos 2x+2sin^(2)x)/(cos^(2)x) dx

Evaluate the following Integrals. int (cos x)/(1+sin x) dx

Evaluate the following integrals: int(5cos^(3)x+6sin^(3)x)/(2sin^(2)x cos^(2)x)dx

Evaluate the following integrals int (cos^(2)x sin x)/(sin x - cos x)dx

Evaluate the following integrals. int sin x sqrt( 1 - cos 2x)dx

Evaluate the following integrals : int (sin x+cos x+x^(5//2))dx.

int frac{sin^2x}{cos^6x}dx is a: