Home
Class 12
MATHS
Evaluate the following integrals: int ...

Evaluate the following integrals:
`int frac{sqrtx}{sqrt(a^3-x^3)}dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{\sqrt{x}}{\sqrt{a^3 - x^3}} \, dx, \] we will use a substitution method to simplify the expression. ### Step 1: Substitution Let us make the substitution \( x^{3/2} = t \). Then, we can express \( x \) in terms of \( t \): \[ x = t^{2/3}. \] Now, we need to find \( dx \) in terms of \( dt \). Differentiating both sides gives: \[ dx = \frac{2}{3} t^{-1/3} \, dt. \] ### Step 2: Substitute in the Integral Now we substitute \( x \) and \( dx \) into the integral: \[ I = \int \frac{\sqrt{t^{2/3}}}{\sqrt{a^3 - (t^{2/3})^3}} \cdot \frac{2}{3} t^{-1/3} \, dt. \] This simplifies to: \[ I = \int \frac{t^{1/3}}{\sqrt{a^3 - t^2}} \cdot \frac{2}{3} t^{-1/3} \, dt. \] ### Step 3: Simplify the Integral The \( t^{1/3} \) in the numerator and \( t^{-1/3} \) in the denominator cancel out: \[ I = \frac{2}{3} \int \frac{1}{\sqrt{a^3 - t^2}} \, dt. \] ### Step 4: Recognize the Integral Form The integral \[ \int \frac{1}{\sqrt{a^3 - t^2}} \, dt \] is a standard form that can be evaluated using the formula: \[ \int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1}\left(\frac{x}{a}\right) + C. \] In our case, we can set \( a = a^{3/2} \) and \( t \) corresponds to \( x \). ### Step 5: Evaluate the Integral Thus, we have: \[ I = \frac{2}{3} \cdot \sin^{-1}\left(\frac{t}{a^{3/2}}\right) + C. \] ### Step 6: Substitute Back to Original Variable Recall that we made the substitution \( t = x^{3/2} \). Therefore, we substitute back to get: \[ I = \frac{2}{3} \sin^{-1}\left(\frac{x^{3/2}}{a^{3/2}}\right) + C. \] ### Final Answer We can rewrite the final answer in a more standard form: \[ I = \frac{2}{3} \sin^{-1}\left(\frac{\sqrt{x^3}}{a^{3/2}}\right) + C. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int frac{x}{sqrt(x+1)}dx

Evaluate the following integrals: int frac{dx}{xsqrt(x^4-1)}

Evaluate the following integrals: int frac{dx}{1+cosx}

Evaluate the following integrals: int frac{x}{x^2-1}dx

Evaluate the following integrals: int frac{dx}{sqrt(16-9x^2)}

Evaluate the following integrals: int frac{3x-1}{sqrt(x^2+9)}dx

Evaluate the following integrals: int frac{sqrt(1+x^2)}{x^4}dx

Evaluate the following integrals: inte^(sqrt(x))dx

Evaluate the following integrals: int x sqrt(x+2)dx

Evaluate the following integrals: int sqrt(2ax-x^2dx