Home
Class 12
MATHS
Evaluate the following integrals: int f...

Evaluate the following integrals:
`int frac{cosx-cos^2x}{1-cosx}dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{\cos x - \cos^2 x}{1 - \cos x} \, dx, \] we can follow these steps: ### Step 1: Simplify the integrand First, we can factor out \(\cos x\) from the numerator: \[ \cos x - \cos^2 x = \cos x (1 - \cos x). \] So, we can rewrite the integral as: \[ \int \frac{\cos x (1 - \cos x)}{1 - \cos x} \, dx. \] ### Step 2: Cancel common terms Now, we can cancel the common term \(1 - \cos x\) in the numerator and the denominator (as long as \(1 - \cos x \neq 0\)): \[ \int \cos x \, dx. \] ### Step 3: Integrate The integral of \(\cos x\) is straightforward: \[ \int \cos x \, dx = \sin x + C, \] where \(C\) is the constant of integration. ### Final Answer Thus, the final result of the integral is: \[ \sin x + C. \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int frac{dx}{1+cosx}

Evaluate the following integrals: int frac{x}{x^2-1}dx

Evaluate the following integrals: int(cos2x)/(cosx)dx

Evaluate the following integrals: int frac{(1+cosx)}{x+sinx}dx

Evaluate the following integrals: int frac{sinx+cosx}{sqrt(1+sin2x)}dx

Evaluate the following integrals: int_0^picosx|cosx|dx

Evaluate the following integrals: int frac{x}{sqrt(x+1)}dx

Evaluate the following integrals: int frac{sin^6x+cos^6x}{sin^2x cos^2x}dx

Evaluate the following integrals: int(dx)/((cosx-sinx))

Evaluate the following integrals. int (1)/(1-cosx)dx