Home
Class 12
MATHS
Evaluate the following integrals: int f...

Evaluate the following integrals:
`int frac{x^2}{(x^2+a^2)(x^2+b^2)}dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{x^2}{(x^2 + a^2)(x^2 + b^2)} \, dx, \] we will use the method of partial fractions. ### Step 1: Set up the partial fraction decomposition We can express the integrand as: \[ \frac{x^2}{(x^2 + a^2)(x^2 + b^2)} = \frac{A}{x^2 + a^2} + \frac{B}{x^2 + b^2}. \] ### Step 2: Multiply through by the denominator Multiplying both sides by \((x^2 + a^2)(x^2 + b^2)\) gives: \[ x^2 = A(x^2 + b^2) + B(x^2 + a^2). \] ### Step 3: Expand the right-hand side Expanding the right-hand side, we have: \[ x^2 = Ax^2 + Ab^2 + Bx^2 + Ba^2. \] Combining like terms results in: \[ x^2 = (A + B)x^2 + (Ab^2 + Ba^2). \] ### Step 4: Set up equations for coefficients By comparing coefficients, we can set up the following equations: 1. \(A + B = 1\) (coefficient of \(x^2\)) 2. \(Ab^2 + Ba^2 = 0\) (constant term) ### Step 5: Solve the system of equations From the first equation, we can express \(B\) in terms of \(A\): \[ B = 1 - A. \] Substituting this into the second equation gives: \[ A b^2 + (1 - A)a^2 = 0. \] This simplifies to: \[ A b^2 + a^2 - A a^2 = 0 \implies A(b^2 - a^2) = -a^2. \] Thus, \[ A = \frac{-a^2}{b^2 - a^2}. \] Substituting \(A\) back into \(B = 1 - A\): \[ B = 1 + \frac{a^2}{b^2 - a^2} = \frac{b^2 - a^2 + a^2}{b^2 - a^2} = \frac{b^2}{b^2 - a^2}. \] ### Step 6: Substitute back into the integral Now we can rewrite the integral: \[ I = \int \left( \frac{-a^2}{b^2 - a^2} \cdot \frac{1}{x^2 + a^2} + \frac{b^2}{b^2 - a^2} \cdot \frac{1}{x^2 + b^2} \right) dx. \] ### Step 7: Integrate each term Now we can integrate each term separately: \[ I = \frac{-a^2}{b^2 - a^2} \int \frac{1}{x^2 + a^2} \, dx + \frac{b^2}{b^2 - a^2} \int \frac{1}{x^2 + b^2} \, dx. \] Using the formula \(\int \frac{1}{x^2 + c^2} \, dx = \frac{1}{c} \tan^{-1} \left( \frac{x}{c} \right) + C\), we find: \[ I = \frac{-a^2}{b^2 - a^2} \cdot \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) + \frac{b^2}{b^2 - a^2} \cdot \frac{1}{b} \tan^{-1} \left( \frac{x}{b} \right) + C. \] ### Step 8: Simplify the result This simplifies to: \[ I = \frac{-a}{b^2 - a^2} \tan^{-1} \left( \frac{x}{a} \right) + \frac{b}{b^2 - a^2} \tan^{-1} \left( \frac{x}{b} \right) + C. \] ### Final Result Thus, the final result is: \[ I = \frac{-a}{b^2 - a^2} \tan^{-1} \left( \frac{x}{a} \right) + \frac{b}{b^2 - a^2} \tan^{-1} \left( \frac{x}{b} \right) + C. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int frac{x}{x^2-1}dx

Evaluate the following integrals: int frac{x^2}{1-x^3}dx

Evaluate the following integrals: int sqrt(2ax-x^2dx

Evaluate the following integrals: int frac{2x+3}{x^2+3x}dx

Evaluate the following integrals: int frac{2x-1}{2x+3}dx

Evaluate the following integrals: int frac{(x^2+2)}{x+1}dx

Evaluate the following integrals: int frac{dx}{sqrt(16-9x^2)}

Evaluate the following integrals: int frac{x}{sqrt(x+1)}dx

Evaluate the following integrals: int frac{3x-1}{sqrt(x^2+9)}dx

Evaluate the following integrals: int frac{sqrt(1+x^2)}{x^4}dx