Home
Class 12
MATHS
Evaluate the following integrals: int f...

Evaluate the following integrals:
`int frac{2x-1}{(x-1)(x+2)(x-3)}dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{2x-1}{(x-1)(x+2)(x-3)} \, dx, \] we will use the method of partial fractions. Here’s the step-by-step solution: ### Step 1: Set up the partial fraction decomposition We can express the integrand as a sum of simpler fractions: \[ \frac{2x-1}{(x-1)(x+2)(x-3)} = \frac{A}{x-1} + \frac{B}{x+2} + \frac{C}{x-3} \] where \( A \), \( B \), and \( C \) are constants to be determined. ### Step 2: Clear the denominators Multiply both sides by the denominator \((x-1)(x+2)(x-3)\): \[ 2x - 1 = A(x+2)(x-3) + B(x-1)(x-3) + C(x-1)(x+2) \] ### Step 3: Expand the right-hand side Expanding each term: 1. \( A(x+2)(x-3) = A(x^2 - 3x + 2x - 6) = A(x^2 - x - 6) \) 2. \( B(x-1)(x-3) = B(x^2 - 3x - x + 3) = B(x^2 - 4x + 3) \) 3. \( C(x-1)(x+2) = C(x^2 + 2x - x - 2) = C(x^2 + x - 2) \) Combining these gives: \[ 2x - 1 = (A + B + C)x^2 + (-A - 4B + C)x + (-6A + 3B - 2C) \] ### Step 4: Set up a system of equations Now, we equate coefficients from both sides: 1. Coefficient of \( x^2 \): \( A + B + C = 0 \) 2. Coefficient of \( x \): \( -A - 4B + C = 2 \) 3. Constant term: \( -6A + 3B - 2C = -1 \) ### Step 5: Solve the system of equations From the first equation, we have \( C = -A - B \). Substitute \( C \) into the other equations: 1. Substitute into the second equation: \[ -A - 4B - A - B = 2 \implies -2A - 5B = 2 \implies 2A + 5B = -2 \quad (1) \] 2. Substitute into the third equation: \[ -6A + 3B - 2(-A - B) = -1 \implies -6A + 3B + 2A + 2B = -1 \implies -4A + 5B = -1 \quad (2) \] Now we have two equations: 1. \( 2A + 5B = -2 \) (1) 2. \( -4A + 5B = -1 \) (2) Subtract (1) from (2): \[ (-4A + 5B) - (2A + 5B) = -1 + 2 \implies -6A = 1 \implies A = -\frac{1}{6} \] Substituting \( A \) back into (1): \[ 2(-\frac{1}{6}) + 5B = -2 \implies -\frac{1}{3} + 5B = -2 \implies 5B = -2 + \frac{1}{3} = -\frac{6}{3} + \frac{1}{3} = -\frac{5}{3} \implies B = -\frac{1}{3} \] Now substituting \( A \) and \( B \) back to find \( C \): \[ C = -(-\frac{1}{6}) - (-\frac{1}{3}) = \frac{1}{6} + \frac{2}{6} = \frac{3}{6} = \frac{1}{2} \] ### Step 6: Write the partial fraction decomposition Now we have: \[ \frac{2x-1}{(x-1)(x+2)(x-3)} = -\frac{1}{6(x-1)} - \frac{1}{3(x+2)} + \frac{1}{2(x-3)} \] ### Step 7: Integrate each term Now we can integrate each term separately: \[ \int \left(-\frac{1}{6(x-1)} - \frac{1}{3(x+2)} + \frac{1}{2(x-3)}\right) \, dx \] This gives: \[ -\frac{1}{6} \ln |x-1| - \frac{1}{3} \ln |x+2| + \frac{1}{2} \ln |x-3| + C \] ### Step 8: Combine the logarithms We can combine the logarithmic terms: \[ = \ln \left( \frac{(x-3)^{1/2}}{(x-1)^{1/6}(x+2)^{1/3}} \right) + C \] ### Final Answer Thus, the final result is: \[ \int \frac{2x-1}{(x-1)(x+2)(x-3)} \, dx = \ln \left( \frac{(x-3)^{1/2}}{(x-1)^{1/6}(x+2)^{1/3}} \right) + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int frac{x}{x^2-1}dx

Evaluate the following integrals: int frac{2x-1}{2x+3}dx

Evaluate the following integrals: int frac{x}{sqrt(x+1)}dx

Evaluate the following integrals: int frac{dx}{xsqrt(x^4-1)}

Evaluate the following integrals: int frac{2x+3}{x^2+3x}dx

Evaluate the following integrals: int frac{x^2}{1-x^3}dx

Evaluate the following integrals: int frac{3x-1}{sqrt(x^2+9)}dx

Evaluate the following integrals: int frac{(x^2+2)}{x+1}dx

Evaluate the following integral: int_1^2|x-3|dx

Evaluate the following integrals: int frac{x^2}{(x^2+a^2)(x^2+b^2)}dx