Home
Class 12
MATHS
int tan^(-1)sqrt xdx is equal to:...

`int tan^(-1)sqrt xdx` is equal to:

A

`(x+1) tan^(-1) sqrtx-sqrtx+c`

B

`xtan^(-1) sqrt x-sqrt x+c`

C

`sqrt x -x tan^(-1)sqrt x+c`

D

`sqrt x-(x+1)tan^(-1)sqrtx+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \tan^{-1}(\sqrt{x}) \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t = \sqrt{x} \). Then, \( x = t^2 \) and differentiating gives: \[ dx = 2t \, dt \] ### Step 2: Rewrite the Integral Now, substitute \( t \) and \( dx \) into the integral: \[ \int \tan^{-1}(\sqrt{x}) \, dx = \int \tan^{-1}(t) \cdot (2t \, dt) = 2 \int t \tan^{-1}(t) \, dt \] ### Step 3: Integration by Parts We will use integration by parts, where we let: - \( u = \tan^{-1}(t) \) (first function) - \( dv = t \, dt \) (second function) Then, we differentiate and integrate: - \( du = \frac{1}{1+t^2} \, dt \) - \( v = \frac{t^2}{2} \) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ \int t \tan^{-1}(t) \, dt = \tan^{-1}(t) \cdot \frac{t^2}{2} - \int \frac{t^2}{2} \cdot \frac{1}{1+t^2} \, dt \] ### Step 4: Simplifying the Integral Now we simplify the remaining integral: \[ \int \frac{t^2}{2(1+t^2)} \, dt = \frac{1}{2} \int \left(1 - \frac{1}{1+t^2}\right) \, dt = \frac{1}{2} \left( t - \tan^{-1}(t) \right) + C \] ### Step 5: Combine Results Now substituting back into our integration by parts result: \[ \int t \tan^{-1}(t) \, dt = \frac{t^2}{2} \tan^{-1}(t) - \frac{1}{2} \left( t - \tan^{-1}(t) \right) + C \] \[ = \frac{t^2}{2} \tan^{-1}(t) - \frac{t}{2} + \frac{1}{2} \tan^{-1}(t) + C \] ### Step 6: Substitute Back to \( x \) Now, replace \( t \) back with \( \sqrt{x} \): \[ = \frac{(\sqrt{x})^2}{2} \tan^{-1}(\sqrt{x}) - \frac{\sqrt{x}}{2} + \frac{1}{2} \tan^{-1}(\sqrt{x}) + C \] \[ = \frac{x}{2} \tan^{-1}(\sqrt{x}) - \frac{\sqrt{x}}{2} + \frac{1}{2} \tan^{-1}(\sqrt{x}) + C \] ### Final Result Combining the terms gives us: \[ \int \tan^{-1}(\sqrt{x}) \, dx = \frac{x}{2} \tan^{-1}(\sqrt{x}) - \frac{\sqrt{x}}{2} + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int tan^(-1)xdx

" "int x tan^(-1)xdx

The value of int tan^(3)2x sec2xdx is equal to

int x^(3)tan^(-1)xdx

int x^(2)tan^(-1)xdx

int x*tan^(-1)xdx

int x tan^(-1)xdx

int tan^(2)xdx

int tan^(4)xdx