Home
Class 12
MATHS
Evaluate the following integrals. in...

Evaluate the following integrals.
` int ( sqrt(x) - (1)/(sqrt(x)))^(2) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 \, dx \), we will follow these steps: ### Step 1: Expand the integrand First, we expand the expression inside the integral: \[ \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 = \left( \sqrt{x} \right)^2 - 2 \cdot \sqrt{x} \cdot \frac{1}{\sqrt{x}} + \left( \frac{1}{\sqrt{x}} \right)^2 \] This simplifies to: \[ x - 2 + \frac{1}{x} \] ### Step 2: Rewrite the integral Now, we can rewrite the integral: \[ I = \int \left( x - 2 + \frac{1}{x} \right) \, dx \] ### Step 3: Integrate term by term Now we will integrate each term separately: 1. The integral of \( x \) is: \[ \int x \, dx = \frac{x^2}{2} \] 2. The integral of \( -2 \) is: \[ \int -2 \, dx = -2x \] 3. The integral of \( \frac{1}{x} \) is: \[ \int \frac{1}{x} \, dx = \log |x| \] Putting it all together, we have: \[ I = \frac{x^2}{2} - 2x + \log |x| + C \] where \( C \) is the constant of integration. ### Final Answer Thus, the final result of the integral is: \[ I = \frac{x^2}{2} - 2x + \log |x| + C \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int x sqrt(x+2)dx

Evaluate the following Integrals. int sqrt(tan x) dx

Evaluate the following integrals: inte^(sqrt(x))dx

Evaluate the following Integrals. int sqrt(cot x ) dx

Evaluate the following integrals: int sqrt(2ax-x^2dx

Evaluate the following integrals int sqrt((1-x)/(1+x))dx

Evaluate the following integrals. int (1 + x) sqrt(1-x)dx

Evaluate the following integrals: int (x)/(sqrt(x+1))dx

Evaluate the following integrals. int (2x -3)/(sqrt(2x-1))dx

Find the integral int(sqrt(x)-(1)/(sqrt(x)))^(2)dx