Home
Class 12
MATHS
Evaluate the following integrals. int...

Evaluate the following integrals.
` int sin x sqrt( 1 - cos 2x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \sin x \sqrt{1 - \cos 2x} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We know that \( \cos 2x = 1 - 2\sin^2 x \). Therefore, we can express \( 1 - \cos 2x \) as: \[ 1 - \cos 2x = 1 - (1 - 2\sin^2 x) = 2\sin^2 x \] Thus, we can rewrite the integral as: \[ I = \int \sin x \sqrt{2 \sin^2 x} \, dx \] ### Step 2: Factor out constants Since \( \sqrt{2 \sin^2 x} = \sqrt{2} |\sin x| \) and assuming \( \sin x \) is non-negative in the interval we are considering, we can simplify this to: \[ I = \sqrt{2} \int \sin^2 x \, dx \] ### Step 3: Use the identity for \( \sin^2 x \) We can use the identity \( \sin^2 x = \frac{1 - \cos 2x}{2} \): \[ I = \sqrt{2} \int \frac{1 - \cos 2x}{2} \, dx \] This simplifies to: \[ I = \frac{\sqrt{2}}{2} \int (1 - \cos 2x) \, dx \] ### Step 4: Integrate the expression Now we can integrate term by term: \[ I = \frac{\sqrt{2}}{2} \left( \int 1 \, dx - \int \cos 2x \, dx \right) \] The integrals are: \[ \int 1 \, dx = x \] \[ \int \cos 2x \, dx = \frac{\sin 2x}{2} \] Thus, we have: \[ I = \frac{\sqrt{2}}{2} \left( x - \frac{\sin 2x}{2} \right) + C \] ### Step 5: Simplify the result Distributing \( \frac{\sqrt{2}}{2} \): \[ I = \frac{\sqrt{2}}{2} x - \frac{\sqrt{2}}{4} \sin 2x + C \] ### Final Answer The final result of the integral is: \[ I = \frac{\sqrt{2}}{2} x - \frac{\sqrt{2}}{4} \sin 2x + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following integrals. int sin x cos x (sin 2x + cos 2x) dx

Evaluate the following integrals. int (1 + x) sqrt(1-x)dx

Evaluate the following Integrals : int (dx)/(sin x(3+1 cos x))dx

Evaluate the following integrals: int (x)/(sqrt(x+1))dx

Evaluate the following integrals. int (sin x + cos x)/(sqrt(1+ sin 2x))dx

Evaluate the following integrals int sqrt((1-x)/(1+x))dx

Evaluate the following integrals int (dx)/(1+sin x+cos x)

Evaluate the following integrals: inte^(x)((2-sin2x)/(1-cos2x))dx

Evaluate the following integrals : int(sin^(2)x)/(1+cos x)dx

Evaluate the following integrals : int (sin x+cos x+x^(5//2))dx.