Home
Class 12
MATHS
Evaluate the following integrals. int...

Evaluate the following integrals.
` int (1 + x) sqrt(1-x)dx `

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int (1 + x) \sqrt{1 - x} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = 1 - x \). Then, we have: \[ x = 1 - t \quad \text{and} \quad dx = -dt \] ### Step 2: Rewrite the Integral Substituting \( x \) and \( dx \) into the integral, we get: \[ \int (1 + (1 - t)) \sqrt{t} (-dt) = \int (2 - t) \sqrt{t} (-dt) \] This simplifies to: \[ -\int (2 - t) \sqrt{t} \, dt \] ### Step 3: Distribute the Integral Distributing the integral gives us: \[ -\int (2\sqrt{t} - t\sqrt{t}) \, dt = -\int (2t^{1/2} - t^{3/2}) \, dt \] ### Step 4: Integrate Each Term Now we can integrate each term separately: \[ -\left( \int 2t^{1/2} \, dt - \int t^{3/2} \, dt \right) \] Using the power rule for integration: \[ \int t^{n} \, dt = \frac{t^{n+1}}{n+1} + C \] we find: \[ -\left( 2 \cdot \frac{t^{3/2}}{3/2} - \frac{t^{5/2}}{5/2} \right) = -\left( \frac{4}{3} t^{3/2} - \frac{2}{5} t^{5/2} \right) \] ### Step 5: Simplify the Result This simplifies to: \[ -\frac{4}{3} t^{3/2} + \frac{2}{5} t^{5/2} + C \] ### Step 6: Substitute Back Now, substitute \( t = 1 - x \) back into the expression: \[ -\frac{4}{3} (1 - x)^{3/2} + \frac{2}{5} (1 - x)^{5/2} + C \] ### Final Result Thus, the final answer is: \[ \int (1 + x) \sqrt{1 - x} \, dx = -\frac{4}{3} (1 - x)^{3/2} + \frac{2}{5} (1 - x)^{5/2} + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int (x)/(sqrt(x+1))dx

Evaluate the following integrals. int (2x -3)/(sqrt(2x-1))dx

Evaluate the following integrals: int((1+x)^(3))/(sqrt(x))dx

Evaluate the following integrals. int sin x sqrt( 1 - cos 2x)dx

Evaluate the following integrals. int ( sqrt(x) - (1)/(sqrt(x)))^(2) dx

Evaluate the following integrals. int (sin x + cos x)/(sqrt(1+ sin 2x))dx

Evaluate the following integrals: int((x+1)(x-2))/(sqrt(x))dx

Evaluate the following integrals: int x sqrt(x+2)dx

Evaluate the following integrals int sqrt((1-x)/(1+x))dx

Evaluate the following integrals: int_(0)^(1)sqrt((1-x)/(1+x))dx