Home
Class 12
MATHS
Evaluate the following integrals. int...

Evaluate the following integrals.
`int (1)/(1-cosx)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \frac{1}{1 - \cos x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand using trigonometric identities We know that \( 1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right) \). Therefore, we can rewrite the integral as: \[ I = \int \frac{1}{1 - \cos x} \, dx = \int \frac{1}{2 \sin^2\left(\frac{x}{2}\right)} \, dx \] ### Step 2: Simplify the integral This can be simplified to: \[ I = \frac{1}{2} \int \frac{1}{\sin^2\left(\frac{x}{2}\right)} \, dx \] We know that \( \frac{1}{\sin^2 u} = \csc^2 u \), so we can write: \[ I = \frac{1}{2} \int \csc^2\left(\frac{x}{2}\right) \, dx \] ### Step 3: Integrate using the known integral of cosecant squared The integral of \( \csc^2 u \) is \( -\cot u + C \). Thus, we have: \[ I = \frac{1}{2} \left(-\cot\left(\frac{x}{2}\right) + C\right) \] ### Step 4: Simplify the result This simplifies to: \[ I = -\frac{1}{2} \cot\left(\frac{x}{2}\right) + C \] ### Final Answer Thus, the evaluated integral is: \[ I = -\frac{1}{2} \cot\left(\frac{x}{2}\right) + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following integrals : int(1)/(1+cos2x)dx

Evaluate the following integrals: int(cos2x)/(cosx)dx

Evaluate the following integrals: inte^(x)(sinx+cosx)dx

Evaluate the following integrals. int (1 + x) sqrt(1-x)dx

Evaluate the following integrals int sqrt((1-x)/(1+x))dx

Evaluate the following integral: int_0^pi(dx)/(6-cosx)

Evaluate the following Integrals. int 1/(1+sin (ax))dx

Evaluate the following integral : int(1)/(x^(4)+1)dx

Evaluate the following Integrals : int (dx)/(1+x^(3))

Evaluate the following integrals: (i) int((1-cosx)/(1+cosx))dx (ii) int((1+cosx)/(1-cosx))dx