Home
Class 12
MATHS
Evaluate the following integrals. ...

Evaluate the following integrals.
` int (sinx + cos x)/((sin x - cos x)^(3))dx `

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{\sin x + \cos x}{(\sin x - \cos x)^3} \, dx, \] we will use substitution. Let's go through the steps: ### Step 1: Substitution Let \[ t = \sin x - \cos x. \] Then, we differentiate \(t\) with respect to \(x\): \[ \frac{dt}{dx} = \cos x + \sin x. \] Thus, \[ dt = (\cos x + \sin x) \, dx. \] ### Step 2: Rewrite the Integral From our substitution, we can express \(\sin x + \cos x\) in terms of \(t\): \[ \sin x + \cos x \, dx = dt. \] Now, substituting \(t\) into the integral, we have: \[ \int \frac{dt}{t^3}. \] ### Step 3: Integrate The integral \(\int t^{-3} \, dt\) can be evaluated using the power rule for integration: \[ \int t^{-3} \, dt = \frac{t^{-2}}{-2} + C = -\frac{1}{2t^2} + C. \] ### Step 4: Substitute Back Now, we substitute back \(t = \sin x - \cos x\): \[ -\frac{1}{2(\sin x - \cos x)^2} + C. \] ### Final Answer Thus, the final result of the integral is: \[ -\frac{1}{2(\sin x - \cos x)^2} + C. \] ---
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int (1-sinx )/(x+cos x) dx

Evaluate the following integrals int (dx)/(1+sin x+cos x)

Evaluate the following integrals. int (sin x + cos x)/(sqrt(1+ sin 2x))dx

Evaluate the following integrals. int sin x sqrt( 1 - cos 2x)dx

Evaluate the following integrals. int sin x cos x (sin 2x + cos 2x) dx

Evaluate the following integrals int (cos^(2)x sin x)/(sin x - cos x)dx

Evaluate the following integrals: int (sinx)/(sin2x)dx

Evaluate the following integrals: int(cos x)/(1-cos x)dx

Evaluate the following Integrals : int (dx)/(sin x(3+1 cos x))dx

Evaluate the following Integrals : int (cos x)/((1+sin x)(2+sin x))dx