Home
Class 12
MATHS
Evaluate the following integrals. in...

Evaluate the following integrals.
`int tanx sec^(6) x dx `

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \tan x \sec^6 x \, dx \), we can use the method of substitution. Here’s a step-by-step solution: ### Step 1: Choose a substitution Let us choose: \[ t = \sec x \] Then, we know that: \[ \frac{dt}{dx} = \sec x \tan x \quad \Rightarrow \quad dt = \sec x \tan x \, dx \] ### Step 2: Rewrite the integral We can express \( \tan x \sec^6 x \, dx \) in terms of \( t \): \[ \tan x \sec^6 x \, dx = \tan x \sec^6 x \cdot \frac{dt}{\sec x \tan x} = \sec^5 x \, dt \] Since \( \sec x = t \), we have: \[ \sec^5 x = t^5 \] Thus, the integral becomes: \[ \int \tan x \sec^6 x \, dx = \int t^5 \, dt \] ### Step 3: Integrate Now we can integrate: \[ \int t^5 \, dt = \frac{t^6}{6} + C \] ### Step 4: Substitute back Now we substitute back \( t = \sec x \): \[ \frac{t^6}{6} + C = \frac{\sec^6 x}{6} + C \] ### Final Answer Thus, the final answer is: \[ \int \tan x \sec^6 x \, dx = \frac{\sec^6 x}{6} + C \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

int tanx sec^(2)x*dx

Evaluate the following integrals: int(2tanx-3cotx)^(2)dx

int e^tanx sec^2x dx

Evaluate the following integrals: int(tan x)/(sec x+tan x)dx

Evaluate the following integrals : (a) int (dx)/( x^(2) - 6x + 13),

Evaluate the following integrals: inte^(x)secx(1+tanx)dx

Evaluate the following integrals. int (1 + x) sqrt(1-x)dx

Evaluate the following integrals: int (1-sinx )/(x+cos x) dx

Evaluate the following integrals: int (1)/(sec x + tan x)dx

Evaluate the following integrals: int(sec^(2)x+csc^(2)x)dx