Home
Class 12
MATHS
Evaluate: (i) inttan^3xsec^2x\ dx (ii) i...

Evaluate: (i) `inttan^3xsec^2x\ dx` (ii) `int((logx)^3)/x\ dx`

Text Solution

Verified by Experts

The correct Answer is:
`(sec^(7)x)/(7) - (sec^(5))/(5) + C`
Promotional Banner

Similar Questions

Explore conceptually related problems

inttan^3xsec^9xdx=?

inttan^3xsec^3xdx=

inttan^3xsec^5xdx=

Evaluate: (i) int tan^(3)x sec^(2)xdx( ii) int((log x)^(3))/(x)dx

I= int (logx)^2/x dx

Evaluate (i) int tan^(3/2)x sec^(2)xdx (ii) int(x^(3))/((x^(2)+1)^(3))dx

int(logx)/(x^3)dx=

int tan^(2)xsec^(4)x dx

Evaluate: (i) int(sinx)/(1+cos^2x)\ dx (ii) int(2x^3)/(4+x^8)\ dx

Evaluate: (i) int e^(2x-3)dx (ii) int a^(3x+2)dx