Home
Class 12
MATHS
int (e^(x))/(e^(x) + e^(-x))dx...

`int (e^(x))/(e^(x) + e^(-x))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{e^x}{e^x + e^{-x}} \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ I = \int \frac{e^x}{e^x + e^{-x}} \, dx \] We can rewrite \( e^{-x} \) as \( \frac{1}{e^x} \): \[ I = \int \frac{e^x}{e^x + \frac{1}{e^x}} \, dx \] This simplifies to: \[ I = \int \frac{e^{2x}}{e^{2x} + 1} \, dx \] ### Step 2: Split the integral Next, we can split the integral into two parts: \[ I = \int 1 \, dx - \int \frac{1}{e^{2x} + 1} \, dx \] This gives us: \[ I = x - \int \frac{1}{e^{2x} + 1} \, dx \] ### Step 3: Substitution for the second integral For the second integral, we can use the substitution \( t = e^x \). Then, \( dt = e^x \, dx \) or \( dx = \frac{dt}{t} \). The limits change accordingly, but since we are dealing with indefinite integrals, we focus on the expression: \[ \int \frac{1}{e^{2x} + 1} \, dx = \int \frac{1}{t^2 + 1} \cdot \frac{dt}{t} \] This simplifies to: \[ \int \frac{1}{t(t^2 + 1)} \, dt \] ### Step 4: Partial fraction decomposition We can decompose \( \frac{1}{t(t^2 + 1)} \) into partial fractions: \[ \frac{1}{t(t^2 + 1)} = \frac{A}{t} + \frac{Bt + C}{t^2 + 1} \] Multiplying through by the denominator \( t(t^2 + 1) \) gives: \[ 1 = A(t^2 + 1) + (Bt + C)t \] Expanding and matching coefficients, we get: \[ 1 = At^2 + A + Bt^2 + Ct \] This results in: \[ (A + B)t^2 + Ct + A = 1 \] From here, we can set up the equations: 1. \( A + B = 0 \) 2. \( C = 0 \) 3. \( A = 1 \) Solving these gives \( A = 1, B = -1, C = 0 \). Thus, we have: \[ \frac{1}{t(t^2 + 1)} = \frac{1}{t} - \frac{t}{t^2 + 1} \] ### Step 5: Integrate each term Now we can integrate each term separately: \[ \int \left( \frac{1}{t} - \frac{t}{t^2 + 1} \right) dt = \int \frac{1}{t} \, dt - \int \frac{t}{t^2 + 1} \, dt \] The first integral is: \[ \int \frac{1}{t} \, dt = \ln |t| \] The second integral can be solved using the substitution \( u = t^2 + 1 \), giving: \[ \int \frac{t}{t^2 + 1} \, dt = \frac{1}{2} \ln |t^2 + 1| \] ### Step 6: Combine results Putting it all together, we have: \[ I = x - \left( \ln |t| - \frac{1}{2} \ln |t^2 + 1| \right) + C \] Substituting back \( t = e^x \): \[ I = x - \ln |e^x| + \frac{1}{2} \ln |e^{2x} + 1| + C \] This simplifies to: \[ I = x - x + \frac{1}{2} \ln |e^{2x} + 1| + C \] Thus, we arrive at the final result: \[ I = \frac{1}{2} \ln |e^{2x} + 1| + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int(e^(x))/(e^(2x)+6e^(x)+5)dx

Evaluate: int(e^(x))/(e^(2x)+5e^(x)+6)dx

Let I =int(e^(x))/(e^(4x)+e^(2x)+1)dx , J = int(e^(-x))/(e^(-4x)+e^(-2x)+1)dx . Then for an arbitary constant C, the value of I - J equals

Statement -1 : If I_(1)=int(e^(x))/(e^(4x)+e^(2x)+1)dx and I_(2)=int(e^(-x))/(e^(-4x)+e^(-2x)+1)dx , then I_(2)-I_(1)=(1)/(2)log((e^(2x)-e^(x)+1)/(e^(2x)+e^(x)+1))+C where C is an arbitrary constant. Statement -2 : A primitive of f(x) =(x^(2)-1)/(x^(4)+x^(2)+1) is (1)/(2)log((x^(2)-x+1)/(x^(2)+x+1)) .

int(e^(x)dx)/(e^(x)-1)

int(dx)/(e^(x)+e^(-x))

int_(0)^(1)sqrt((e^(x))/(e^(x)+e^(-x)))dx=

inte^(x)(e^(x)-e^(-x))dx=

(i) int(e^(x))/(1+e^(x))dx" "(ii) int (e^(x)) /((1+e^(x))^(4))dx

int(e^(x))/((1+e^(x))(2+e^(x)))dx