Home
Class 12
MATHS
If int (2^(1//x))/(x^(2))dx= k.2^(1//x) ...

If `int (2^(1//x))/(x^(2))dx= k.2^(1//x)` , then k is equal to :

A

`(-1)/(log 2)`

B

`- log 2`

C

`-1`

D

`(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{2^{\frac{1}{x}}}{x^2} \, dx\) and find the value of \(k\) such that \(\int \frac{2^{\frac{1}{x}}}{x^2} \, dx = k \cdot 2^{\frac{1}{x}}\), we will use substitution. Here are the steps: ### Step 1: Substitution Let \(y = \frac{1}{x}\). Then, we differentiate both sides: \[ \frac{dy}{dx} = -\frac{1}{x^2} \Rightarrow dy = -\frac{1}{x^2} \, dx \Rightarrow dx = -x^2 \, dy \] Since \(x = \frac{1}{y}\), we have: \[ dx = -\left(\frac{1}{y^2}\right) dy \] ### Step 2: Rewrite the Integral Substituting \(y\) into the integral, we get: \[ \int \frac{2^{\frac{1}{x}}}{x^2} \, dx = \int 2^y \left(-\frac{1}{y^2}\right) dy = -\int \frac{2^y}{y^2} \, dy \] ### Step 3: Integrate Now we need to integrate \(-\int \frac{2^y}{y^2} \, dy\). The integral of \(a^x\) is given by: \[ \int a^x \, dx = \frac{a^x}{\ln a} + C \] Thus, we can apply this to our integral: \[ -\int 2^y \, dy = -\frac{2^y}{\ln 2} + C \] ### Step 4: Substitute Back Now, substituting back \(y = \frac{1}{x}\): \[ -\frac{2^{\frac{1}{x}}}{\ln 2} + C \] ### Step 5: Express in Terms of k We can express the result as: \[ \int \frac{2^{\frac{1}{x}}}{x^2} \, dx = -\frac{1}{\ln 2} \cdot 2^{\frac{1}{x}} + C \] Comparing this with the given form \(k \cdot 2^{\frac{1}{x}}\), we find: \[ k = -\frac{1}{\ln 2} \] ### Final Answer Thus, the value of \(k\) is: \[ \boxed{-\frac{1}{\ln 2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(6)+1/(x^(6))=k(x^(2)+1/(x^(2))) then k is equal to

If int(2^(1backslash x))/(x^(2))dx=k2^(1backslash x)+C, then k is equal to -(1)/((log)_(e)2)(b)(log)_(e)2(c)-1(d)(1)/(2)

int(1)/((x^(2)+k)^(n))dx

int(sin^(2)x)/(1+cos2x)dx=k (tan x-x)+c then k is equal to

If int_0^(1/2)(x^2)/(1-x^2)^(3/2)dx=k/6 , then k=

int _(2)^(k)(2x+1) dx = 6 then k is equal to

If the value of the integral int_(0)^(1//2) (x^(2))/((1-x^(2))^(3//2)) dx is (k)/(6) then k is equal to :

" Q3: The value of integral "int_(1)^(2)(dx)/((x^(2)-2x+4)^(3/2))=(k)/(k+5)" ,then "k" is equal to "

If int(1+xcosx)/(x(1-x^(2)e^(2sinx)))dx = k" ln "sqrt((x^(2)e^(2 sinx))/(1-x^(2)e^(2sinx)))+C then k is equal to: