Home
Class 12
MATHS
If int sec 2 x dx = f[ g(x)] + C, then...

If ` int sec 2 x dx = f[ g(x)] + C`, then

A

`f(x) = log |x|, g(x) = tan ((x)/(4) -x)`

B

`f(x) = log |x|, g(x) = cot((x)/(4) -x)`

C

`f(x) = (1)/(2) log |x|, g(x) = tan ((x)/(4) -x)`

D

`f(x) = (1)/(2) log |x| , g(x) = cot((pi)/(4) -x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sec^2 x \, dx \) and express it in the form \( f(g(x)) + C \), we will follow these steps: ### Step 1: Integrate \( \sec^2 x \) The integral of \( \sec^2 x \) is a standard result: \[ \int \sec^2 x \, dx = \tan x + C \] ### Step 2: Express the result in the form \( f(g(x)) + C \) We need to express \( \tan x \) in the form \( f(g(x)) \). To do this, we can let: - \( g(x) = x \) - \( f(x) = \tan x \) Thus, we can write: \[ \tan x = f(g(x)) \] ### Step 3: Identify \( f(x) \) and \( g(x) \) From our expressions, we have: - \( f(x) = \tan x \) - \( g(x) = x \) ### Final Result Thus, we have: \[ \int \sec^2 x \, dx = f(g(x)) + C = \tan(g(x)) + C = \tan(x) + C \] ### Summary of Results - \( f(x) = \tan x \) - \( g(x) = x \)
Promotional Banner

Similar Questions

Explore conceptually related problems

int x sec^2x dx

If int sec2xdx=f{g(x)}+c then

If int sec x "cosec" x dx = log | g(x) | + c , then what is g(x) equal to ?

If int e^(sec x)(sec x tan x f(x)+(sec x tan x + sec^(2) x))dx = e^(sec x)f(x) + C , then a possible choice of f(x) is

If int sin xd(sec x)=f(x)-g(x)+c, then f(x)=sec x( b )f(x)=tan xg(x)=2x(d)g(x)=x