Home
Class 12
MATHS
int ( n sin^(n-1))/(secx (sin x)^(n)) dx...

`int ( n sin^(n-1))/(secx (sin x)^(n)) dx ` equals :

A

`(cos^(n))/((1+sin x)^(n))`

B

`(sin ^(x)x)/((1+sin x)^(n))`

C

`(-cos^(x))/((1+sin x)^(n))+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{n \sin^{n-1}(x)}{\sec(x) \sin^n(x)} \, dx, \] we can simplify the expression and then find the solution step by step. ### Step 1: Rewrite the integral We can rewrite \(\sec(x)\) in terms of \(\cos(x)\): \[ \sec(x) = \frac{1}{\cos(x)}. \] Thus, the integral becomes: \[ \int \frac{n \sin^{n-1}(x)}{\frac{1}{\cos(x)} \sin^n(x)} \, dx = \int n \sin^{n-1}(x) \cos(x) \cdot \sin^{-n}(x) \, dx. \] ### Step 2: Simplify the integrand Now, we can simplify the integrand: \[ \int n \sin^{n-1}(x) \cos(x) \cdot \frac{1}{\sin^n(x)} \, dx = \int n \frac{\cos(x)}{\sin(x)} \, dx = n \int \cot(x) \, dx. \] ### Step 3: Integrate \(\cot(x)\) The integral of \(\cot(x)\) is: \[ \int \cot(x) \, dx = \ln|\sin(x)| + C. \] Thus, we have: \[ n \int \cot(x) \, dx = n \ln|\sin(x)| + C. \] ### Step 4: Final answer Therefore, the final answer for the integral is: \[ \int \frac{n \sin^{n-1}(x)}{\sec(x) \sin^n(x)} \, dx = n \ln|\sin(x)| + C. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int sin^(n)(sin^(-1)x)dx

m,n,in1^(+), then lim_(x rarr0)(sin x^(n))/((sin x)^(m)) equals

For any n in N,int_(0)^( pi)(sin^(2)(nx))/(sin^(2)x)dx is equal to

If m, n in N , then l_(m n) = int_(0)^(1) x^(m) (1-x)^(n) dx is equal to

int (cos n-sin n)/(cos n+sin n)dn

For any n in N, int_(0)^(pi) (sin (2n+1)x)/(sinx)dx is equal to

For any n in N, int_(0)^(pi) (sin^(2)nx)/(sin^(2)x)dx is equal to

int x^(n-1)sin x^(n)dx

If m, n in N , then int_(0)^(pi//2)((sin^(m)x)^(1/n))/((sin^(m)x)^(1/n)+(cos^(m)x)^(1/n))dx is equal to

2 ^ (n-1) sin ((pi) / (n)) sin ((2 pi) / (n)) ..... sin ((n-1) / (n)) pi equals: