Home
Class 12
MATHS
int tan 2 x tan 3x tan 5x dx = log | se...

`int tan 2 x tan 3x tan 5x dx = log | sec^(a) 2x. Sec^(b) 3x. Sec^(c) 5x| + k`. Then:\

A

a, b, c are in H.P.

B

a = b = c

C

ab + bc + ca = 0

D

`a^(-3) + b^(-3) + c^(-3) = 3a^(-1) b^(-1) c^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \tan 2x \tan 3x \tan 5x \, dx \) and express it in the form \( \log | \sec^{a} 2x \cdot \sec^{b} 3x \cdot \sec^{c} 5x | + k \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \tan 2x \tan 3x \tan 5x \, dx \] ### Step 2: Use the Tangent Addition Formula We can express \( \tan 5x \) using the tangent addition formula: \[ \tan 5x = \tan(2x + 3x) = \frac{\tan 2x + \tan 3x}{1 - \tan 2x \tan 3x} \] This allows us to rewrite the integral in terms of \( \tan 2x \) and \( \tan 3x \). ### Step 3: Substitute into the Integral Substituting \( \tan 5x \) into the integral gives: \[ I = \int \tan 2x \tan 3x \left( \frac{\tan 2x + \tan 3x}{1 - \tan 2x \tan 3x} \right) dx \] ### Step 4: Simplify the Integral This can be simplified to: \[ I = \int \frac{\tan^2 2x \tan 3x + \tan 2x \tan^2 3x}{1 - \tan 2x \tan 3x} \, dx \] ### Step 5: Integrate Each Term We can integrate each term separately: 1. The integral of \( \tan^2 2x \tan 3x \) can be computed using the identity \( \tan^2 x = \sec^2 x - 1 \). 2. The integral of \( \tan 2x \tan^2 3x \) can similarly be computed. ### Step 6: Use the Integral of Tangent Recall that: \[ \int \tan x \, dx = -\ln |\cos x| = \ln |\sec x| \] Thus, we can express the integrals of \( \tan 2x \), \( \tan 3x \), and \( \tan 5x \) in terms of logarithms of secants. ### Step 7: Combine the Results After integrating, we will have: \[ I = \frac{1}{5} \ln |\sec 5x| - \frac{1}{2} \ln |\sec 2x| - \frac{1}{3} \ln |\sec 3x| + C \] Using properties of logarithms, we can combine these into a single logarithm: \[ I = \ln \left| \sec^{\frac{1}{5}} 5x \cdot \sec^{-\frac{1}{2}} 2x \cdot \sec^{-\frac{1}{3}} 3x \right| + C \] ### Step 8: Identify \( a, b, c \) From the expression, we identify: - \( a = -\frac{1}{2} \) - \( b = -\frac{1}{3} \) - \( c = \frac{1}{5} \) ### Final Answer Thus, the values of \( a, b, c \) are: - \( a = -\frac{1}{2} \) - \( b = -\frac{1}{3} \) - \( c = \frac{1}{5} \)
Promotional Banner

Similar Questions

Explore conceptually related problems

int (sec x+tan x)tanx dx

int(secx- tan x)/(sec x+ tan x) dx

int sec x log (sec x+tan x) dx.

int sec x ln(sec x+tan x)dx=

int secx. log (sec x+ tan x ) dx

If int e^(sec x)(sec x tan x f(x)+(sec x tan x + sec^(2) x))dx = e^(sec x)f(x) + C , then a possible choice of f(x) is

log (sec 2x +tan 2 x)