Home
Class 12
MATHS
If int f(x) dx = 2 cos sqrt(x) + c, then...

If `int f(x) dx = 2 cos sqrt(x) + c`, then f(x) =

A

`sin sqrt(x)`

B

`-(sin sqrt(x))/(sqrt(x))`

C

`2 cos sqrt(x)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the function \( f(x) \) given that the integral of \( f(x) \) with respect to \( x \) is equal to \( 2 \cos(\sqrt{x}) + c \). ### Step-by-Step Solution: 1. **Start with the given integral**: \[ \int f(x) \, dx = 2 \cos(\sqrt{x}) + c \] 2. **Differentiate both sides with respect to \( x \)**: To find \( f(x) \), we need to differentiate the right-hand side: \[ f(x) = \frac{d}{dx}(2 \cos(\sqrt{x}) + c) \] 3. **Apply the chain rule**: The derivative of \( 2 \cos(\sqrt{x}) \) can be calculated using the chain rule. Let \( u = \sqrt{x} \), then: \[ \frac{d}{dx} (2 \cos(u)) = -2 \sin(u) \cdot \frac{du}{dx} \] where \( \frac{du}{dx} = \frac{1}{2\sqrt{x}} \). 4. **Substituting back**: Now substituting back \( u = \sqrt{x} \): \[ f(x) = -2 \sin(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}} = -\frac{\sin(\sqrt{x})}{\sqrt{x}} \] 5. **Final result**: Thus, we find: \[ f(x) = -\frac{\sin(\sqrt{x})}{\sqrt{x}} \] ### Conclusion: The function \( f(x) \) is: \[ f(x) = -\frac{\sin(\sqrt{x})}{\sqrt{x}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If int f(x)dx=-2cot(sqrt(x))+c ,then f(x) is equal to ?

If f(x)= int_(1/x^2)^(x^2)cos sqrt(t)dt , then f'(1)=

If int(dx)/((x+100)sqrt(x+99))=f(x)+C , then f(x) is

If int f(x)dx=F(x), then int x^(3)f(x^(2))dx is equal to:

If int f(x)dx=f(x), then int{f(x)}^(2)dx is equal to

If f(x)=int_(a)^(x)[f(x)]^(-1)dxand int_(a)^(1)[f(x)]^(-1)dx=sqrt(2), then f(2)=2( b) f'(2)=(1)/(2)f'(2)=2(d)int_(0)^(1)f(x)dx=sqrt(2)