Home
Class 12
MATHS
Evaluate the following Integrals. in...

Evaluate the following Integrals.
` int (dx)/((2 sin x+ 3 cos x)^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{dx}{(2 \sin x + 3 \cos x)^2} \] we will follow these steps: ### Step 1: Multiply by \(\sec^2 x\) We multiply both the numerator and the denominator by \(\sec^2 x\): \[ I = \int \frac{\sec^2 x \, dx}{(2 \sin x + 3 \cos x)^2 \sec^2 x} \] ### Step 2: Rewrite the integral Using the identity \(\sec x = \frac{1}{\cos x}\), we rewrite the integral: \[ I = \int \frac{\sec^2 x \, dx}{(2 \tan x + 3)^2} \] ### Step 3: Substitution Let \(t = 2 \tan x + 3\). Then, we differentiate \(t\): \[ \frac{dt}{dx} = 2 \sec^2 x \implies dt = 2 \sec^2 x \, dx \implies dx = \frac{dt}{2 \sec^2 x} \] ### Step 4: Substitute in the integral Now substitute \(dx\) in the integral: \[ I = \int \frac{\sec^2 x \cdot \frac{dt}{2 \sec^2 x}}{t^2} = \int \frac{dt}{2 t^2} \] ### Step 5: Integrate The integral simplifies to: \[ I = \frac{1}{2} \int t^{-2} \, dt \] Integrating gives: \[ I = \frac{1}{2} \left(-\frac{1}{t}\right) + C = -\frac{1}{2t} + C \] ### Step 6: Substitute back for \(t\) Substituting back \(t = 2 \tan x + 3\): \[ I = -\frac{1}{2(2 \tan x + 3)} + C \] ### Final Answer Thus, the evaluated integral is: \[ I = -\frac{1}{2(2 \tan x + 3)} + C \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following Integrals. int (dx)/(cos x (sin x + 2 cosx))

Evaluate the following Integrals : int (dx)/(sin x(3+1 cos x))dx

Evaluate the following Integrals. int (cos x)/(1+sin x) dx

Evaluate the following integrals int (dx)/(1+sin x+cos x)

Evaluate the following integrals: int (dx)/(1-sin^(2)x)

Evaluate the following integrals: int (1-cos x)/(sin x) dx

Evaluate the following Integrals. int (dx)/(4sin^(2)x + 4 sin x cos x + 5 cos^(2) x)

Evaluate the following integrals. int (sinx + cos x)/((sin x - cos x)^(3))dx

Evaluate the following integrals: int (sinx)/(sin2x)dx

Evaluate the following integrals: int cos^(-1)(sin x)dx