Home
Class 12
MATHS
Evaluate the following Integrals. int...

Evaluate the following Integrals.
`int (dx)/(cos x (sin x + 2 cosx))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{dx}{\cos x (\sin x + 2 \cos x)}, \] we will follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral in a more manageable form: \[ I = \int \frac{dx}{\cos x (\sin x + 2 \cos x)}. \] ### Step 2: Factor Out Cosine Next, we factor out \(\cos x\) from the denominator: \[ I = \int \frac{dx}{\cos x \sin x + 2 \cos^2 x}. \] ### Step 3: Simplify the Denominator We can express \(\sin x\) in terms of \(\tan x\): \[ \sin x = \tan x \cos x \implies \sin x + 2 \cos x = \tan x \cos x + 2 \cos x = \cos x (\tan x + 2). \] Thus, we can rewrite the integral as: \[ I = \int \frac{dx}{\cos^2 x (\tan x + 2)}. \] ### Step 4: Substitute for \(\tan x\) Using the identity \(\sec^2 x = 1 + \tan^2 x\), we can express the integral in terms of \(\tan x\): Let \(t = \tan x + 2\). Then, differentiating gives: \[ dt = \sec^2 x \, dx \implies dx = \frac{dt}{\sec^2 x}. \] ### Step 5: Substitute into the Integral Substituting \(dx\) and \(\tan x\) into the integral, we have: \[ I = \int \frac{\sec^2 x \, dt}{\cos^2 x t} = \int \frac{dt}{t}. \] ### Step 6: Integrate Now, we can integrate: \[ I = \ln |t| + C = \ln |\tan x + 2| + C. \] ### Final Answer Thus, the evaluated integral is: \[ \int \frac{dx}{\cos x (\sin x + 2 \cos x)} = \ln |\tan x + 2| + C. \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following Integrals. int (cos x)/(1+sin x) dx

Evaluate the following integrals: int(cos2x)/(cosx)dx

Evaluate the following integrals int (dx)/(1+sin x+cos x)

Evaluate the following Integrals. int (dx)/((2 sin x+ 3 cos x)^(2))

Evaluate the following integrals. int sin x cos x (sin 2x + cos 2x) dx

Evaluate the following integrals: int (1-cos x)/(sin x) dx

Evaluate the following Integrals. int (2+ 3cosx)/(3sin x+ 2x)dx

Evaluate the following integrals. int (dx)/(x cos^(2) (log x))

Evaluate the following Integrals. int (dx)/(4sin^(2)x + 4 sin x cos x + 5 cos^(2) x)

Evaluate the following integrals. int (sinx + cos x)/((sin x - cos x)^(3))dx