Home
Class 12
MATHS
Evaluate the following Integrals. int ...

Evaluate the following Integrals.
`int sqrt(cot x ) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \sqrt{\cot x} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = \cot x \). Then, the derivative of \( t \) with respect to \( x \) is: \[ dt = -\csc^2 x \, dx \quad \Rightarrow \quad dx = -\frac{dt}{\csc^2 x} \] Using the identity \( \csc^2 x = 1 + \cot^2 x = 1 + t^2 \), we can rewrite \( dx \): \[ dx = -\frac{dt}{1 + t^2} \] ### Step 2: Rewrite the Integral Now substitute \( t \) into the integral: \[ I = \int \sqrt{t} \left(-\frac{dt}{1 + t^2}\right) = -\int \frac{\sqrt{t}}{1 + t^2} \, dt \] ### Step 3: Split the Integral We can split the integral into two parts: \[ I = -\int \frac{t^{1/2}}{1 + t^2} \, dt \] To evaluate this integral, we can use the method of partial fractions or substitution. ### Step 4: Use Partial Fractions We can express \( \frac{t^{1/2}}{1 + t^2} \) in a more manageable form. However, it is easier to use the substitution \( u = t^{1/2} \), which gives \( t = u^2 \) and \( dt = 2u \, du \): \[ I = -\int \frac{u}{1 + u^4} \cdot 2u \, du = -2 \int \frac{u^2}{1 + u^4} \, du \] ### Step 5: Further Simplification Now we can simplify the integral: \[ I = -2 \int \frac{u^2}{1 + u^4} \, du \] This integral can be solved using trigonometric substitution or recognizing it as a standard integral. ### Step 6: Solve the Integral Using the formula for integrals of the form \( \int \frac{x^2}{1 + x^4} \, dx \), we can find: \[ \int \frac{u^2}{1 + u^4} \, du = \frac{1}{2} \tan^{-1}(u^2) + C \] Thus, \[ I = -2 \left( \frac{1}{2} \tan^{-1}(u^2) \right) + C = -\tan^{-1}(u^2) + C \] ### Step 7: Back Substitute Substituting back \( u = \sqrt{t} = \sqrt{\cot x} \): \[ I = -\tan^{-1}(\cot x) + C \] ### Step 8: Final Result Using the identity \( \tan^{-1}(\cot x) = \frac{\pi}{2} - x \): \[ I = -\left(\frac{\pi}{2} - x\right) + C = x - \frac{\pi}{2} + C \] Thus, the final result is: \[ \int \sqrt{\cot x} \, dx = x - \frac{\pi}{2} + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following Integrals. int sqrt(tan x) dx

Evaluate the following integrals: int x sqrt(x+2)dx

Evaluate the following integrals: int sqrt(1+sinx dx

Evaluate the following integrals. int (1 + x) sqrt(1-x)dx

Evaluate the following integrals int sqrt((cos x- cos^(3)x)/((1-cos^(3)x)))dx

Evaluate the following integrals: int sqrt(2ax-x^2dx

Evaluate the following integrals. int ( sqrt(x) - (1)/(sqrt(x)))^(2) dx

Evaluate the following Integrals. int (x+1)sqrt(x^(2) + 2x+ 1) dx

Evaluate the following integrals. int sin x sqrt( 1 - cos 2x)dx

Evaluate the following integrals: inte^(sqrt(x))dx