Home
Class 12
MATHS
int (d theta)/((sin theta - 2 cos theta)...

`int (d theta)/((sin theta - 2 cos theta)(2 sin theta + cos theta))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{d\theta}{(\sin \theta - 2 \cos \theta)(2 \sin \theta + \cos \theta)}, \] we will proceed with the following steps: ### Step 1: Rewrite the Integral First, we rewrite the integral in a more manageable form by multiplying the numerator and denominator by \(\cos \theta\): \[ I = \int \frac{\cos \theta \, d\theta}{(\sin \theta - 2 \cos \theta)(2 \sin \theta + \cos \theta) \cos \theta}. \] ### Step 2: Substitute \(\tan \theta\) Next, we can use the substitution \(t = \tan \theta\). Therefore, we have: \[ d\theta = \frac{dt}{\sec^2 \theta} = \frac{dt}{1 + t^2}. \] Also, we can express \(\sin \theta\) and \(\cos \theta\) in terms of \(t\): \[ \sin \theta = \frac{t}{\sqrt{1+t^2}}, \quad \cos \theta = \frac{1}{\sqrt{1+t^2}}. \] ### Step 3: Substitute in the Integral Now we substitute these into the integral: \[ I = \int \frac{\frac{1}{\sqrt{1+t^2}} \cdot \frac{dt}{1+t^2}}{\left(\frac{t}{\sqrt{1+t^2}} - 2 \cdot \frac{1}{\sqrt{1+t^2}}\right)\left(2 \cdot \frac{t}{\sqrt{1+t^2}} + \frac{1}{\sqrt{1+t^2}}\right)}. \] ### Step 4: Simplify the Denominator The denominator simplifies to: \[ \left(t - 2\right)\left(2t + 1\right). \] Thus, we have: \[ I = \int \frac{dt}{(t - 2)(2t + 1)}. \] ### Step 5: Partial Fraction Decomposition Next, we perform partial fraction decomposition: \[ \frac{1}{(t - 2)(2t + 1)} = \frac{A}{t - 2} + \frac{B}{2t + 1}. \] Multiplying through by the denominator gives: \[ 1 = A(2t + 1) + B(t - 2). \] ### Step 6: Solve for A and B To find \(A\) and \(B\), we can substitute convenient values for \(t\): 1. Let \(t = 2\): \[ 1 = A(5) \implies A = \frac{1}{5}. \] 2. Let \(t = 0\): \[ 1 = B(-2) \implies B = -\frac{1}{2}. \] Thus, we have: \[ \frac{1}{(t - 2)(2t + 1)} = \frac{1/5}{t - 2} - \frac{1/2}{2t + 1}. \] ### Step 7: Integrate Each Term Now we can integrate each term separately: \[ I = \int \left(\frac{1/5}{t - 2} - \frac{1/2}{2t + 1}\right) dt = \frac{1}{5} \ln |t - 2| - \frac{1}{4} \ln |2t + 1| + C. \] ### Step 8: Substitute Back Finally, we substitute back \(t = \tan \theta\): \[ I = \frac{1}{5} \ln |\tan \theta - 2| - \frac{1}{4} \ln |2\tan \theta + 1| + C. \] ### Final Answer Thus, the result of the integral is: \[ I = \frac{1}{5} \ln |\tan \theta - 2| - \frac{1}{4} \ln |2\tan \theta + 1| + C. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int(d theta)/((sin theta-2cos theta)(2sin theta+cos theta))=

(sin theta-cos theta)^(2)*(sin theta+cos theta)^(2)=

((sin theta+cos theta)^(2)-1)/(sin theta*cos theta)

Prove each of the following identities : (i) (sin theta - cos theta)/(sin theta + cos theta) + ( sin theta+ cos theta)/(sin theta - cos theta) = (2)/((2 sin^(2) theta -1)) (ii) (sin theta + cos theta ) /(sin theta - cos theta) + ( sin theta - cos theta) /(sin theta + cos theta) = (2) /((1- 2 cos^(2) theta))

Prove each of the following identities : (sin theta + cos theta)/(sin theta - cos theta) + (sin theta - cos theta)/(sin theta + cos theta) = (2) /((sin^(2) theta - cos^(2) theta)) = (2) /((2sin^(2) theta -1))

int (sin theta + cos theta) * d theta

(sin theta-cos theta)/(sin theta+cos theta)+(sin theta+cos theta)/(sin theta-cos theta)=(2)/((2sin^(2)theta-1))

(sin 2 theta)/(sin theta)-(cos 2 theta)/(cos theta)= A) sec theta B) tan theta C)1 D)2

The value of (cos^6 theta+sin^6 theta+ 3sin^2 theta cos^2 theta)/(cosec theta sec theta(sin theta+cos theta-1)(sin theta+cos theta+1)) is : (cos^6 theta+sin^6 theta+ 3sin^2 theta cos^2 theta)/(cosec theta sec theta(sin theta+cos theta-1)(sin theta+cos theta+1)) का मान ज्ञात कीजिए?

Prove each of the following identities : (cos theta) /((1- tan theta)) - (sin^(2) theta)/((cos theta - sin theta)) = (cos theta + sin theta)