Home
Class 12
MATHS
int (sin^(-1)x)/((l -x^(2))^(3//2)) dx...

`int (sin^(-1)x)/((l -x^(2))^(3//2)) dx `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\sin^{-1} x}{(1 - x^2)^{3/2}} \, dx \), we will use the substitution method and integration by parts. Let's go through the solution step by step. ### Step 1: Substitution Let \( x = \sin \theta \). Then, we have: \[ dx = \cos \theta \, d\theta \] Also, we know that: \[ \sin^{-1} x = \theta \] And, since \( x = \sin \theta \): \[ 1 - x^2 = 1 - \sin^2 \theta = \cos^2 \theta \] Thus, \[ (1 - x^2)^{3/2} = (\cos^2 \theta)^{3/2} = \cos^3 \theta \] ### Step 2: Rewrite the Integral Substituting these into the integral, we get: \[ I = \int \frac{\theta}{\cos^3 \theta} \cos \theta \, d\theta = \int \frac{\theta}{\cos^2 \theta} \, d\theta = \int \theta \sec^2 \theta \, d\theta \] ### Step 3: Integration by Parts Now, we will use integration by parts. Let: - \( u = \theta \) \(\Rightarrow du = d\theta\) - \( dv = \sec^2 \theta \, d\theta \) \(\Rightarrow v = \tan \theta\) Using the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] we have: \[ I = \theta \tan \theta - \int \tan \theta \, d\theta \] ### Step 4: Integrate \( \tan \theta \) The integral of \( \tan \theta \) is: \[ \int \tan \theta \, d\theta = -\ln |\cos \theta| + C \] Thus, we can write: \[ I = \theta \tan \theta + \ln |\cos \theta| + C \] ### Step 5: Substitute Back Now we substitute back \( \theta = \sin^{-1} x \) and \( \tan \theta = \frac{x}{\sqrt{1 - x^2}} \): \[ I = \sin^{-1} x \cdot \frac{x}{\sqrt{1 - x^2}} + \ln |\cos(\sin^{-1} x)| + C \] Since \( \cos(\sin^{-1} x) = \sqrt{1 - x^2} \), we have: \[ I = \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} + \ln(\sqrt{1 - x^2}) + C \] This simplifies to: \[ I = \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} + \frac{1}{2} \ln(1 - x^2) + C \] ### Final Answer Thus, the final result for the integral is: \[ \int \frac{\sin^{-1} x}{(1 - x^2)^{3/2}} \, dx = \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} + \frac{1}{2} \ln(1 - x^2) + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int (sin^-1x)/x^2 dx

int (sin ^ (- 1) x) / ((1-x ^ (2)) ^ ((3) / (2))) dx

int((sin^(-1)x)^(3))/(sqrt(1-x^(2)))dx

int(1-sin^(3)x)/(sin^(2)x)dx

Evaluate the following : (i) int(x+(1)/(x))^(3//2)((x^(2)-1)/(x^(2)))dx " (ii) " int(sqrt(2+logx))/(x)dx (iii) int((sin^(-1)x)^(3))/(sqrt(1-x^(2)))dx " (iv) " int(cotx)/(sqrt(sinx))dx

int(1-sin^(2)x)/(sin^(2)x)dx

int(sin^(2)x)/(1+sin^(2)x)dx

int (sin ^ (- 1) x) / (x ^ (2)) dx

int (sin ^ (- 1) x) / (x ^ (2)) dx

int sin^(2)(sin^(-1)x)dx