Home
Class 12
MATHS
If int ( dx )/(5 + 4 sin x) = A tan^(-1...

If `int ( dx )/(5 + 4 sin x) = A tan^(-1) ( B tan ((x)/(2)) + (4)/(3)) + C`, then :

A

`A = (2)/(3) , B = (5)/(3)`

B

`A = (1)/(3), B = (5)/(3)`

C

`A = (2)/(3), B = (2)/(3)`

D

`A = (1)/(3), B = (2)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{dx}{5 + 4 \sin x} \) and express it in the form \( A \tan^{-1} \left( B \tan \left( \frac{x}{2} \right) + \frac{4}{3} \right) + C \), we will follow these steps: ### Step 1: Rewrite \( \sin x \) in terms of \( \tan \left( \frac{x}{2} \right) \) Using the identity: \[ \sin x = \frac{2 \tan \left( \frac{x}{2} \right)}{1 + \tan^2 \left( \frac{x}{2} \right)} \] we can express \( 4 \sin x \) as: \[ 4 \sin x = \frac{8 \tan \left( \frac{x}{2} \right)}{1 + \tan^2 \left( \frac{x}{2} \right)} \] ### Step 2: Substitute into the integral Now, substituting this into the integral gives: \[ \int \frac{dx}{5 + 4 \sin x} = \int \frac{dx}{5 + \frac{8 \tan \left( \frac{x}{2} \right)}{1 + \tan^2 \left( \frac{x}{2} \right)}} \] ### Step 3: Simplify the integral Let \( t = \tan \left( \frac{x}{2} \right) \). Then, we have: \[ dx = \frac{2}{1 + t^2} dt \] Substituting \( dx \) into the integral: \[ \int \frac{2 dt}{(5 + \frac{8t}{1+t^2})(1+t^2)} \] ### Step 4: Combine and simplify the denominator The denominator becomes: \[ 5(1 + t^2) + 8t = 5 + 5t^2 + 8t \] Thus, we rewrite the integral as: \[ \int \frac{2 dt}{5 + 5t^2 + 8t} \] ### Step 5: Factor the quadratic The quadratic can be rewritten as: \[ 5t^2 + 8t + 5 = 5 \left( t^2 + \frac{8}{5} t + 1 \right) \] Completing the square: \[ = 5 \left( \left( t + \frac{4}{5} \right)^2 + \frac{9}{25} \right) \] ### Step 6: Substitute back into the integral Now, the integral becomes: \[ \frac{2}{5} \int \frac{dt}{\left( t + \frac{4}{5} \right)^2 + \left( \frac{3}{5} \right)^2} \] ### Step 7: Use the arctangent formula Using the formula: \[ \int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) + C \] we get: \[ = \frac{2}{5} \cdot \frac{5}{3} \tan^{-1} \left( \frac{t + \frac{4}{5}}{\frac{3}{5}} \right) + C \] ### Step 8: Substitute back \( t = \tan \left( \frac{x}{2} \right) \) Substituting \( t \) back: \[ = \frac{2}{3} \tan^{-1} \left( \frac{5 \tan \left( \frac{x}{2} \right) + 4}{3} \right) + C \] ### Final Result Thus, comparing with the form \( A \tan^{-1} \left( B \tan \left( \frac{x}{2} \right) + \frac{4}{3} \right) + C \), we find: - \( A = \frac{2}{3} \) - \( B = \frac{5}{3} \)
Promotional Banner

Similar Questions

Explore conceptually related problems

If int (dx)/(5+4 cos x) = k tan^(-1) (m tan ((x)/(2))) + C then :

int_( then )(dx)/(5+4cos x)=a tan^(-1)(b tan((x)/(2)))+c

int (1) / (tan x + sin x) dx

int (1) / (tan x + sin x) dx

int (1) / (tan x + sin x) dx

If int (dx)/(1- sin ^(4)x )= a tan x +b tan ^(-1) (c tan x )+ D, then:

int tan^(4)x dx = A tan^(3) x+ B tan x + f(x) , then

4. int x^(2)*tan^(-1)x*dx