Home
Class 12
MATHS
If int (dx)/(5+4 cos x) = k tan^(-1) (m ...

If `int (dx)/(5+4 cos x) = k tan^(-1) (m tan ((x)/(2))) + C` then :

A

` k = (1)/(3), m = (1)/(3)`

B

`k = (1)/(3), m = (2)/(3)`

C

`k = (2)/(3), m = (2)/(3)`

D

`k = (2)/(3), = (2)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{dx}{5 + 4 \cos x}\), we will follow these steps: ### Step 1: Rewrite \(\cos x\) in terms of \(\tan\) We can use the identity for \(\cos x\) in terms of \(\tan\): \[ \cos x = \frac{1 - \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)} \] Let \(t = \tan\left(\frac{x}{2}\right)\). Then, we can substitute \(\cos x\) in the integral. ### Step 2: Substitute \(\cos x\) in the integral Substituting the expression for \(\cos x\): \[ \int \frac{dx}{5 + 4 \left(\frac{1 - t^2}{1 + t^2}\right)} = \int \frac{dx}{5 + \frac{4(1 - t^2)}{1 + t^2}} \] This simplifies to: \[ \int \frac{dx}{\frac{5(1 + t^2) + 4(1 - t^2)}{1 + t^2}} = \int \frac{(1 + t^2)dx}{9 + t^2} \] ### Step 3: Change of variable Now, we need to express \(dx\) in terms of \(dt\): \[ dx = \frac{2}{1 + t^2} dt \] Substituting this into the integral gives: \[ \int \frac{(1 + t^2) \cdot \frac{2}{1 + t^2} dt}{9 + t^2} = 2 \int \frac{dt}{9 + t^2} \] ### Step 4: Solve the integral The integral \(\int \frac{dt}{9 + t^2}\) can be solved using the formula: \[ \int \frac{dt}{a^2 + t^2} = \frac{1}{a} \tan^{-1}\left(\frac{t}{a}\right) + C \] Here, \(a = 3\): \[ 2 \int \frac{dt}{9 + t^2} = 2 \cdot \frac{1}{3} \tan^{-1}\left(\frac{t}{3}\right) + C = \frac{2}{3} \tan^{-1}\left(\frac{t}{3}\right) + C \] ### Step 5: Substitute back for \(t\) Since \(t = \tan\left(\frac{x}{2}\right)\), we substitute back: \[ \frac{2}{3} \tan^{-1}\left(\frac{\tan\left(\frac{x}{2}\right)}{3}\right) + C \] ### Final Result Thus, we have: \[ \int \frac{dx}{5 + 4 \cos x} = \frac{2}{3} \tan^{-1}\left(\frac{\tan\left(\frac{x}{2}\right)}{3}\right) + C \] ### Comparison with the given form We compare this with the given form \(k \tan^{-1}(m \tan\left(\frac{x}{2}\right)) + C\): - Here, \(k = \frac{2}{3}\) and \(m = \frac{1}{3}\).
Promotional Banner

Similar Questions

Explore conceptually related problems

If int(dx)/(5+4cos x)=1tan^(-1)(m tan((x)/(2)))+C then (a)I=(2)/(3)(b)m=(1)/(3)(c)I=(1)/(3)(d)m=(2)/(3)

int_( then )(dx)/(5+4cos x)=a tan^(-1)(b tan((x)/(2)))+c

If int ( dx )/(5 + 4 sin x) = A tan^(-1) ( B tan ((x)/(2)) + (4)/(3)) + C , then :

If int (dx)/(1- sin ^(4)x )= a tan x +b tan ^(-1) (c tan x )+ D, then:

int(1)/(1+3cos^(2)x)dx=(1)/(2)tan^(-1)((tan x)/(2))+c

If int(sin2x)/(sin^(4)x+cos^(4)x)dx=tan^(-1)(tan^kx)+c , then k is=

int(dx)/((1+cos2x)(1-tan^2 x))=

If int(dx)/(cos2x+3sin^(2)x)=(1)/(a)tan^(-1)(b tanx)+c, then ab=