Home
Class 12
MATHS
int (1)/((x+5)sqrt(x+4))dx is :...

`int (1)/((x+5)sqrt(x+4))dx` is :

A

`tan^(-1) sqrt(x+4)+C`

B

`2tan^(-1) sqrt(x+4)+C`

C

`-tan^(-1) sqrt(x+4) + C`

D

`-2 tan^(-1)sqrt(x+4) + C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1}{(x+5)\sqrt{x+4}} \, dx \), we will follow these steps: ### Step 1: Simplify the Integrand We can rewrite \( x + 5 \) as \( (x + 4) + 1 \). Therefore, we can express the integrand as: \[ I = \int \frac{1}{(x + 4 + 1)\sqrt{x + 4}} \, dx = \int \frac{1}{(x + 4)\sqrt{x + 4} + \sqrt{x + 4}} \, dx \] ### Step 2: Substitution Let \( t = \sqrt{x + 4} \). Then, we have: \[ x + 4 = t^2 \quad \Rightarrow \quad x = t^2 - 4 \] Differentiating both sides gives: \[ dx = 2t \, dt \] ### Step 3: Substitute in the Integral Now, substitute \( t \) and \( dx \) into the integral: \[ I = \int \frac{1}{(t^2 - 4 + 5)t} \cdot 2t \, dt = \int \frac{2t}{(t^2 + 1)t} \, dt = \int \frac{2}{t^2 + 1} \, dt \] ### Step 4: Integrate The integral \( \int \frac{2}{t^2 + 1} \, dt \) can be computed as: \[ I = 2 \tan^{-1}(t) + C \] ### Step 5: Back Substitute Now, substitute back \( t = \sqrt{x + 4} \): \[ I = 2 \tan^{-1}(\sqrt{x + 4}) + C \] ### Final Answer Thus, the integral evaluates to: \[ \int \frac{1}{(x+5)\sqrt{x+4}} \, dx = 2 \tan^{-1}(\sqrt{x + 4}) + C \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

int(1)/(sqrt(5+x)+sqrt(x))dx

Evaluate: (i) int(1)/(x sqrt(x^(4)-1))dx (ii) int sqrt(e^(x)-1)dx

int_(1)^(4)(dx)/(sqrt(x))

int_(1)^(4)(dx)/(sqrt(x))

int_(1)^(4)(dx)/(sqrt(x))

4. int(1)/(sqrt(x)+1)dx

4. int(1)/(sqrt(x+1))dx

Evaluate: int(1)/(sqrt(x)+4sqrt(x))dx

int_(1)^(4)sqrt(x)dx

int_(1)^(4)x sqrt(x)dx = ?