Home
Class 12
MATHS
int ((2x^(e)+ 3)dx)/((x^(2) -1)(x^(2) + ...

`int ((2x^(e)+ 3)dx)/((x^(2) -1)(x^(2) + 4)) = k log ((x+1)/(x-1)) +k (tan^(-) ((x)/(2)))`, then k equals :

A

log 2

B

`1//2`

C

`1//3`

D

`(1)/(log 2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{2x^2 + 3}{(x^2 - 1)(x^2 + 4)} \, dx, \] we will first decompose the integrand into partial fractions. ### Step 1: Partial Fraction Decomposition We can express the integrand as: \[ \frac{2x^2 + 3}{(x^2 - 1)(x^2 + 4)} = \frac{A}{x^2 - 1} + \frac{B}{x^2 + 4}. \] Multiplying through by the denominator \((x^2 - 1)(x^2 + 4)\), we have: \[ 2x^2 + 3 = A(x^2 + 4) + B(x^2 - 1). \] Expanding the right side: \[ 2x^2 + 3 = Ax^2 + 4A + Bx^2 - B = (A + B)x^2 + (4A - B). \] ### Step 2: Set Up the System of Equations By equating coefficients, we get the following system of equations: 1. \(A + B = 2\) 2. \(4A - B = 3\) ### Step 3: Solve the System of Equations From the first equation, we can express \(B\) in terms of \(A\): \[ B = 2 - A. \] Substituting this into the second equation: \[ 4A - (2 - A) = 3 \implies 4A - 2 + A = 3 \implies 5A = 5 \implies A = 1. \] Now substituting \(A = 1\) back into the first equation: \[ 1 + B = 2 \implies B = 1. \] ### Step 4: Rewrite the Integral Now we can rewrite the integral: \[ \int \frac{2x^2 + 3}{(x^2 - 1)(x^2 + 4)} \, dx = \int \left( \frac{1}{x^2 - 1} + \frac{1}{x^2 + 4} \right) \, dx. \] ### Step 5: Integrate Each Term Now, we integrate each term separately: 1. For \(\int \frac{1}{x^2 - 1} \, dx\), we use the formula: \[ \int \frac{1}{x^2 - a^2} \, dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C. \] Here, \(a = 1\): \[ \int \frac{1}{x^2 - 1} \, dx = \frac{1}{2} \log \left| \frac{x - 1}{x + 1} \right|. \] 2. For \(\int \frac{1}{x^2 + 4} \, dx\), we use the formula: \[ \int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) + C. \] Here, \(a = 2\): \[ \int \frac{1}{x^2 + 4} \, dx = \frac{1}{2} \tan^{-1} \left( \frac{x}{2} \right). \] ### Step 6: Combine the Results Combining both results, we have: \[ \int \frac{2x^2 + 3}{(x^2 - 1)(x^2 + 4)} \, dx = \frac{1}{2} \log \left| \frac{x - 1}{x + 1} \right| + \frac{1}{2} \tan^{-1} \left( \frac{x}{2} \right) + C. \] ### Step 7: Compare with Given Expression We are given that: \[ \int \frac{2x^2 + 3}{(x^2 - 1)(x^2 + 4)} \, dx = k \log \left( \frac{x + 1}{x - 1} \right) + k \tan^{-1} \left( \frac{x}{2} \right). \] From our result, we can see that: \[ \frac{1}{2} \log \left| \frac{x - 1}{x + 1} \right| = -\frac{1}{2} \log \left( \frac{x + 1}{x - 1} \right). \] Thus, we can conclude that \(k = \frac{1}{2}\). ### Final Answer Therefore, the value of \(k\) is: \[ \boxed{\frac{1}{2}}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If int((x^(2)-1)dx)/((x^(4)+3x^(2)+1)Tan^(-1)((x^(2)+1)/(x)))=klog|tan^(-1)""(x^(2)+1)/x|+c , then k is equal to

int e^(ln(1+(1)/(x^(2))))*(x(x^(2)-1))/(x^(4)+1)dx=

int(e^(ln tan^(-1)x))/(1+x^(2))dx

If int(1)/((x+1)sqrt(x-1))dx=k.tan^(-1)sqrt((x-1)/(2))+c then k =

int _(-1//2)^(1//2) cos x log ((1+x)/(1-x)) dx = k log 2 , then k equals

int(x^(49)tan^(-1)(x^(50)))/((1+x^(100)))dx=k[tan^(-1)(x^(50))]^(2)+C, , then k is equal to

int(2x^(2)+a^(2))/(x^(2)(x^(2)+a^(2)))dx=(k)/(x)+(1)/(a)Tan^(-1)((x)/(a))+c then k

int((sqrt(x))^(3))/((sqrt(x))^(5)+x^(4))dx=A log((x^(k))/(x^(k)+1))+c

If int(2)/(1-x^(4))dx = k log[(1+x)/(1-x)]+tan^(-1)x + c then k=

int(dx)/(sin^(2)x+Tan^(2)x)=(-1)/(l)cot x-(1)/(k sqrt(2))Tan^(-1)((tan x)/(sqrt(2)))+c then (k)^l=