Home
Class 12
MATHS
If polynomials P and Q satisfyint[(3x-1)...

If polynomials P and Q satisfy`int[(3x-1)cosx+(1-2x)sinx ]dx=P cosx+Qsinx`(ignore the constant of integration) then :

A

`P=3x-2`

B

`Q=2+x`

C

`P=3(x-1)`

D

`Q=3(x-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \[ \int \left[(3x-1) \cos x + (1-2x) \sin x\right] dx \] and express it in the form \( P \cos x + Q \sin x \), where \( P \) and \( Q \) are polynomials in \( x \). ### Step 1: Split the Integral We can split the integral into two parts: \[ I = \int (3x - 1) \cos x \, dx + \int (1 - 2x) \sin x \, dx \] ### Step 2: Evaluate the First Integral Let’s denote the first integral as \( I_1 = \int (3x - 1) \cos x \, dx \). We will use integration by parts, where we let: - \( u = 3x - 1 \) (which gives \( du = 3 \, dx \)) - \( dv = \cos x \, dx \) (which gives \( v = \sin x \)) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ I_1 = (3x - 1) \sin x - \int \sin x \cdot 3 \, dx \] Calculating the remaining integral: \[ \int \sin x \, dx = -\cos x \] Thus, \[ I_1 = (3x - 1) \sin x + 3 \cos x \] ### Step 3: Evaluate the Second Integral Now, we evaluate the second integral \( I_2 = \int (1 - 2x) \sin x \, dx \). Again, we will use integration by parts: Let: - \( u = 1 - 2x \) (which gives \( du = -2 \, dx \)) - \( dv = \sin x \, dx \) (which gives \( v = -\cos x \)) Using the integration by parts formula: \[ I_2 = (1 - 2x)(-\cos x) - \int -\cos x \cdot (-2) \, dx \] Calculating the remaining integral: \[ \int \cos x \, dx = \sin x \] Thus, \[ I_2 = -(1 - 2x) \cos x + 2 \sin x \] ### Step 4: Combine the Results Now we combine \( I_1 \) and \( I_2 \): \[ I = I_1 + I_2 \] Substituting the results we found: \[ I = \left[(3x - 1) \sin x + 3 \cos x\right] + \left[-(1 - 2x) \cos x + 2 \sin x\right] \] Simplifying this gives: \[ I = (3x - 1 + 2) \sin x + (3 - (1 - 2x)) \cos x \] This simplifies to: \[ I = (3x + 1) \sin x + (2x + 2) \cos x \] ### Step 5: Identify P and Q From the expression \( I = P \cos x + Q \sin x \), we can identify: - \( P = 2x + 2 \) - \( Q = 3x + 1 \) ### Final Result Thus, the polynomials \( P \) and \( Q \) are: - \( P = 2x + 2 \) - \( Q = 3x + 1 \)
Promotional Banner

Similar Questions

Explore conceptually related problems

inte^(-x)(cosx-sinx)dx=

int((1+cosx))/(x+sinx)dx

int(cosx)/(3sin^2x-4sinx+1)dx=

The value of int((tan^(-1)(sinx+1))cosx)/((3+2sinx-cos^(2)x))dx is (where c is the constant of integration)

int(x^2cosx)/(1+sinx)^2dx

If the integral I=inte^(sinx)(cosx.x^(2)+2x)dx=e^(f(x))g(x)+C (where, C is the constant of integration), then the number of solution(s) of f(x)=g(x) is/are

int(x-sinx)/(1-cosx)dx

int(cosx)/((1+sinx)(2+sin x))dx