Home
Class 12
MATHS
If int frac{3cosx+2sinx}{4sinx+5cosx}dx=...

If `int frac{3cosx+2sinx}{4sinx+5cosx}dx=Ax+Blog|4sinx+5cosx|+C`,then:

A

`A=frac{23}{41},B=frac{1}{41}`

B

`A=frac{23}{41},B=frac{2}{41}`

C

`A=frac{11}{23},B=frac{2}{23}`

D

`A=frac{12}{23},B=frac{2}{23}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{3\cos x + 2\sin x}{4\sin x + 5\cos x} \, dx \] and express it in the form \[ Ax + B \log |4\sin x + 5\cos x| + C, \] we will identify the values of \(A\) and \(B\). ### Step 1: Identify coefficients We can compare the integral to the standard form: \[ \int \frac{A\cos x + B\sin x}{C\cos x + D\sin x} \, dx \] where \(A = 3\), \(B = 2\), \(C = 5\), and \(D = 4\). ### Step 2: Calculate \(A\) Using the formula for \(A\): \[ A = \frac{AC + BD}{C^2 + D^2} \] Substituting the values: \[ A = \frac{(3)(5) + (2)(4)}{5^2 + 4^2} = \frac{15 + 8}{25 + 16} = \frac{23}{41} \] ### Step 3: Calculate \(B\) Using the formula for \(B\): \[ B = \frac{AD - BC}{C^2 + D^2} \] Substituting the values: \[ B = \frac{(3)(4) - (2)(5)}{5^2 + 4^2} = \frac{12 - 10}{25 + 16} = \frac{2}{41} \] ### Conclusion Thus, we have: \[ A = \frac{23}{41}, \quad B = \frac{2}{41} \] ### Final Answer The values of \(A\) and \(B\) are: \[ A = \frac{23}{41}, \quad B = \frac{2}{41} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

intsinx/(3sinx+5cosx)dx

int(sinx)/(sinx-cosx)dx=

int(sinx*cosx)dx

|[cosx,-sinx],[sinx,cosx]|

If int(4cosx+3sinx)/(2sinx+cosx)dx=ax+b log (2sinx+cosx)+c, then

int3/(sinx+cosx)dx

int(sinx/(2+cosx))dx

int(cosx)/(sinx+cosx)dx=

The value of int frac{sinx}{2cosx+3}dx is:

If int (3sin x+2 cosx)/(3cosx+2sinx)dx=ax+blog_(e)|2 sinx+3 cosx|+c then