Home
Class 12
MATHS
If int frac{xdx}{x^2-4x+8}=K log (x^2-4x...

If `int frac{xdx}{x^2-4x+8}=K log (x^2-4x+8)+tan^(-1)(frac{x-2}{2})+C`, then the value of K is:

A

1//2

B

1

C

2

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x \, dx}{x^2 - 4x + 8} \) and find the value of \( K \) in the expression \[ \int \frac{x \, dx}{x^2 - 4x + 8} = K \log(x^2 - 4x + 8) + \tan^{-1}\left(\frac{x-2}{2}\right) + C, \] we will proceed step by step. ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{x \, dx}{x^2 - 4x + 8}. \] ### Step 2: Simplify the Denominator First, we can complete the square for the quadratic in the denominator: \[ x^2 - 4x + 8 = (x-2)^2 + 4. \] ### Step 3: Use Substitution Next, we can use the substitution \( u = x^2 - 4x + 8 \). Then, we need to find \( du \): \[ du = (2x - 4) \, dx \implies dx = \frac{du}{2x - 4}. \] ### Step 4: Express \( x \) in terms of \( u \) From our substitution, we can express \( x \) in terms of \( u \): \[ x = 2 + \sqrt{u - 4} \quad \text{or} \quad x = 2 - \sqrt{u - 4}. \] ### Step 5: Rewrite the Integral Now, substituting back into the integral, we have: \[ I = \int \frac{x}{u} \cdot \frac{du}{2x - 4}. \] ### Step 6: Split the Integral We can split the integral into two parts: \[ I = \frac{1}{2} \int \frac{2x - 4 + 4}{u} \, du = \frac{1}{2} \int \frac{2x - 4}{u} \, du + 2 \int \frac{1}{u} \, du. \] ### Step 7: Evaluate the Integrals The first integral simplifies to \( \tan^{-1}\left(\frac{x-2}{2}\right) \) and the second integral gives us \( \log|u| \). ### Step 8: Combine Results Combining the results, we have: \[ I = \frac{1}{2} \log(x^2 - 4x + 8) + \tan^{-1}\left(\frac{x-2}{2}\right) + C. \] ### Step 9: Compare with Given Expression Now, comparing this with the given expression: \[ K \log(x^2 - 4x + 8) + \tan^{-1}\left(\frac{x-2}{2}\right) + C, \] we see that: \[ K = \frac{1}{2}. \] ### Final Answer Thus, the value of \( K \) is: \[ \boxed{\frac{1}{2}}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If int(x)/(x^(2)-4x+8)dx=Klog(x^(2)-4x+8)+tan^(-1)((x-2)/(2)) + C then the value of K is

If frac(x)(2x^2+5x+2)=frac(1)(6) , then the value of (x+frac(1)(x)) is

If x^2+y^2+frac (1) (x^2) + frac (1)(y^2)=4 then the value of x^2y^2 is

If frac(10x)(3) + frac(5)(2) ( 2 - frac(x)(3)) = frac(7)(2) , then the value of x is

If (x^2 +frac(1)(x^2))=6 ,then find the value of (10x-frac(10)(x))

If frac(3x + 6)(8) - frac(11x -8)(24) + frac(x)(3)= frac(3x)(4) - frac(x+7)(24) , then the value is

If the solution of (dy)/(dx)-x tan(y-x)=1 is log|sin(y-x)|=(x^(2))/(k)+C then the value of (K)/(5) is

If frac(5)(2) (frac(8x)(3) - frac(1)(2))+frac(13)(2)=frac(2x)(3) ,, then what is the value of x?

If frac(2)(3)- frac(6x)(5) - frac(1)(4) + frac(1)(3) = frac (9x)(5) , then what is the value of x?