Home
Class 12
MATHS
int sqrt(1+secx) dx is equal to:...

`int sqrt(1+secx) dx` is equal to:

A

`2 tan ^(-1) sqrt(frac{1-cosx}{cosx)}+C`

B

`tan ^(-1) sqrt(frac{1-cosx}{cosx)}+C`

C

`3tan ^(-1) sqrt(frac{1+cosx}{cosx)}+C`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \sqrt{1 + \sec x} \, dx \), we will follow a systematic approach using trigonometric identities and substitutions. ### Step-by-Step Solution: 1. **Rewrite the Integral**: \[ I = \int \sqrt{1 + \sec x} \, dx \] Recall that \( \sec x = \frac{1}{\cos x} \). Thus, we can rewrite the integral as: \[ I = \int \sqrt{1 + \frac{1}{\cos x}} \, dx = \int \sqrt{\frac{\cos x + 1}{\cos x}} \, dx \] 2. **Simplify the Expression**: \[ I = \int \sqrt{\frac{1 + \cos x}{\cos x}} \, dx = \int \frac{\sqrt{1 + \cos x}}{\sqrt{\cos x}} \, dx \] 3. **Use Trigonometric Identity**: We know that \( 1 + \cos x = 2 \cos^2\left(\frac{x}{2}\right) \). Thus: \[ I = \int \frac{\sqrt{2 \cos^2\left(\frac{x}{2}\right)}}{\sqrt{\cos x}} \, dx = \int \frac{\sqrt{2} \cos\left(\frac{x}{2}\right)}{\sqrt{\cos x}} \, dx \] 4. **Express \( \cos x \) in Terms of \( \cos\left(\frac{x}{2}\right) \)**: Using the identity \( \cos x = 2 \cos^2\left(\frac{x}{2}\right) - 1 \), we can express \( \sqrt{\cos x} \): \[ \sqrt{\cos x} = \sqrt{2 \cos^2\left(\frac{x}{2}\right) - 1} \] 5. **Substitution**: Let \( t = \sin\left(\frac{x}{2}\right) \), then \( dx = 2 \cos\left(\frac{x}{2}\right) \, dt \). We also have: \[ \cos\left(\frac{x}{2}\right) = \sqrt{1 - t^2} \] Thus: \[ I = \int \frac{\sqrt{2} \sqrt{1 - t^2}}{\sqrt{1 - 2t^2}} \cdot 2\sqrt{1 - t^2} \, dt = 2\sqrt{2} \int \frac{1 - t^2}{\sqrt{1 - 2t^2}} \, dt \] 6. **Integrate**: The integral can be simplified further, and we can use a trigonometric substitution or integral tables to evaluate it. 7. **Final Result**: After performing the integration and substituting back, we arrive at: \[ I = 2 \sin^{-1}\left(\sqrt{2} \sin\left(\frac{x}{2}\right)\right) + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int sqrt(sec x-1)dx is equal to

int sqrt(e^(x)-1)dx is equal to

inttanx sqrt(secx)dx=

int sqrt(sec x-1)dx equal to

inte^(sqrt(x))dx is equal to

int sqrt(1+cos ec)dx equals

int(cosx)/(sqrt(1+sinx))dx is equal to

int(sqrt(tanx)+sqrt(cotx))dx is equal to

int(sinxcosx)/(sqrt(1-sin^(4)x)dx is equal to

int 1/secx dx