Home
Class 12
MATHS
If f(x)=int((5x^4+4x^5))/((x^5+x+1)^(2))...

If `f(x)=int((5x^4+4x^5))/((x^5+x+1)^(2))dx` and f(0)=0, then the value of f(1) is :

A

1

B

`(1)/(2)`

C

`(1)/(3)`

D

`(1)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral function defined by: \[ f(x) = \int \frac{5x^4 + 4x^5}{(x^5 + x + 1)^2} \, dx \] with the condition that \( f(0) = 0 \), and we want to find \( f(1) \). ### Step 1: Simplifying the Integral We start by simplifying the integrand: \[ f(x) = \int \frac{5x^4 + 4x^5}{(x^5 + x + 1)^2} \, dx \] We can factor out \( x^4 \) from the numerator: \[ f(x) = \int \frac{x^4(5 + 4x)}{(x^5 + x + 1)^2} \, dx \] ### Step 2: Substitution Next, we will use substitution to simplify the integral. Let: \[ t = x^5 + x + 1 \] Then, we differentiate \( t \) with respect to \( x \): \[ dt = (5x^4 + 1) \, dx \Rightarrow dx = \frac{dt}{5x^4 + 1} \] ### Step 3: Rewriting the Integral Now we need to express \( 5x^4 + 4x^5 \) in terms of \( t \): \[ 5x^4 + 4x^5 = 5x^4 + 4(x^5) = 5x^4 + 4(t - x - 1) \] Substituting this into the integral gives: \[ f(x) = \int \frac{5x^4 + 4(t - x - 1)}{t^2} \cdot \frac{dt}{5x^4 + 1} \] ### Step 4: Evaluating the Integral This integral can be simplified further, but we can also evaluate it directly for specific values of \( x \). ### Step 5: Finding \( f(0) \) Given that \( f(0) = 0 \), we can find the constant of integration \( C \) after evaluating the integral. ### Step 6: Finding \( f(1) \) Now we calculate \( f(1) \): \[ f(1) = \int \frac{5(1)^4 + 4(1)^5}{(1^5 + 1 + 1)^2} \, dx = \int \frac{5 + 4}{(1 + 1 + 1)^2} \, dx = \int \frac{9}{9} \, dx = \int 1 \, dx \] Evaluating this integral from 0 to 1 gives: \[ f(1) = 1 - 0 = 1 \] ### Conclusion Thus, the value of \( f(1) \) is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If int(5x^(4)+4x^(5))/((x^(5)+x+1)^(2))dx=f(x)+C , then the value of (1)/(f(1)) is

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

If f(x)=int(3x^4-1)/(x^4+x+1)^2dx and f(0)=0 , then f(-1)= …

If f(x) = int(5x^(8)+7x^(6))/((x^(2)+1+2x^(7))^(2))dx, (x ge 0) , and f(0) = 0, then the value of f(1) is

If f'(x)=f(x)+int_(0)^(1)f(x)dx ,given f(0)=1 , then the value of f(log_(e)2) is

If f(x)=int(5x^8+7x^6)/((x^2+1+2x^7)^2)dx, (xge0), f(0)=0 and f(1)=1/K , then the value of K is _______ .

f(x)=int(5x^8+7x^6)/(x^2+1+2x^7)^2dx , if f(0)=0 then find f(1)=1/k. Then k is

If f(x)=(4x(x^(2)+1))/(x^(2)+(x^(2)+1)^(2)),x>=0 then the maximum value of f(x)=k. The value of (5)/(2)k is :