Home
Class 12
MATHS
For any natural number t,int(x^(3t)+x^(2...

For any natural number `t,int(x^(3t)+x^(2t)+x^(t))(2x^(2t)+3x^(t)+6)^(1//t)dx` is :

A

`(1)/(6(t+1))(2x^(3t)+3x^(2t)+6x^(t))^((t+1)/(t))+C`

B

`(1)/(6t)(2x^(2t)+3x^(t)+6x)^(t)+C`

C

`(1)/(t+1)(x^(3t)+x^(2t)+x^(t))^(2)+C`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \left( x^{3t} + x^{2t} + x^{t} \right) \left( 2x^{2t} + 3x^{t} + 6 \right)^{\frac{1}{t}} \, dx, \] we will follow these steps: ### Step 1: Rewrite the Integral We can rewrite the integral in a more manageable form. Let's denote: \[ u = \left( 2x^{2t} + 3x^{t} + 6 \right)^{\frac{1}{t}}. \] Thus, we can express the integral as: \[ I = \int \left( x^{3t} + x^{2t} + x^{t} \right) u \, dx. \] ### Step 2: Simplify the Expression Next, we can multiply the first part of the integrand by \(x^{t}\) and divide by \(x^{t}\): \[ I = \int \frac{x^{3t} + x^{2t} + x^{t}}{x^{t}} \cdot u \cdot x^{t} \, dx = \int \left( x^{2t} + x^{t} + 1 \right) u \cdot x^{t} \, dx. \] ### Step 3: Substitute \(u\) and Differentiate Now, we differentiate \(u\) with respect to \(x\): \[ u = \left( 2x^{2t} + 3x^{t} + 6 \right)^{\frac{1}{t}}. \] Using the chain rule, we find: \[ \frac{du}{dx} = \frac{1}{t} \left( 2x^{2t} + 3x^{t} + 6 \right)^{\frac{1}{t} - 1} \cdot \left( 4tx^{2t-1} + 3tx^{t-1} \right). \] ### Step 4: Express \(dx\) in terms of \(du\) From the above, we can express \(dx\) as: \[ dx = \frac{t}{\left( 4tx^{2t-1} + 3tx^{t-1} \right) \left( 2x^{2t} + 3x^{t} + 6 \right)^{\frac{1}{t} - 1}} \, du. \] ### Step 5: Substitute back into the Integral Substituting \(dx\) back into the integral gives: \[ I = \int \left( x^{2t} + x^{t} + 1 \right) u \cdot \frac{t}{\left( 4tx^{2t-1} + 3tx^{t-1} \right) \left( 2x^{2t} + 3x^{t} + 6 \right)^{\frac{1}{t} - 1}} \, du. \] ### Step 6: Solve the Integral Now, we can integrate with respect to \(u\): \[ I = \frac{t}{4t} \int u^{\frac{1}{t}} \, du = \frac{t}{4t} \cdot \frac{u^{\frac{1}{t} + 1}}{\frac{1}{t} + 1} + C. \] ### Step 7: Back Substitute \(u\) Finally, substitute back \(u\): \[ I = \frac{t}{4t} \cdot \frac{\left( 2x^{2t} + 3x^{t} + 6 \right)^{\frac{1}{t} + 1}}{\frac{1}{t} + 1} + C. \] ### Final Answer Thus, the integral evaluates to: \[ I = \frac{t}{4t} \cdot \frac{\left( 2x^{2t} + 3x^{t} + 6 \right)^{\frac{1}{t} + 1}}{\frac{1}{t} + 1} + C. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(d)/(dx)int_(t^(2))^(x^(3))(dt)/(sqrt(x^(2)+t^(4)))

f (x) = int _(0) ^(x) e ^(t ^(3)) (t ^(2) -1) (t+1) ^(2011) dt (x gt 0) then :

If int_(0)^(x)f(t)dt=x^(2)+int_(x)^(1)t^(2)f(t)dt, then f'((1)/(2)) is

A function is reprersented parametrically by the equations x=(1+t)/(t^(3));y=(3)/(2t^(2))+(2)/(t). Then the value of |(dy)/(dx)-x((dy)/(dx))

int(dx)/(sin^(3)x xos^(3)x)=AIn|(sqrt(2)+t)/(sqrt(2)-t)+B tan^(-1)(t)

Let f(t)="ln"(t) . Then, (d)/(dx)(int_(x^(2))^(x^(3))f(t)" dt")

1.If x=5t-t^(3) ,y=t^(2)+4t find (dy)/(dx) at t=1 .

Investigate for the maxima and minima of the function _(x)f(x)=int_(1)^(x)[2(t-1)(t-2)^(3)+3(t-1)^(2)(t-2)^(2)]dt

Let f(x) be a differentiable function such that int_(t)^(t^(2))xf(x)dx=(4)/(3)t^(3)-(4t)/(3)AA t ge0 , then f(1) is equal to