Home
Class 12
MATHS
intsqrt(x^6+1).(log(x^6+1)-6logx)/(x^10)...

`intsqrt(x^6+1).(log(x^6+1)-6logx)/(x^10)dx "is" =-(1)/(6)[(2)/(3)t^(3//2)logt-(4)/(3)t^(3//2)]+C` where t=

A

`t=(1)/(x^6)`

B

`t=1+(1)/(x^6)`

C

`t=1-(1)/(x^6)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{\sqrt{x^6 + 1} \left( \log(x^6 + 1) - 6 \log x \right)}{x^{10}} \, dx, \] we will follow these steps: ### Step 1: Simplify the integrand We can rewrite the logarithmic part using the property of logarithms: \[ \log(x^6 + 1) - 6 \log x = \log\left(\frac{x^6 + 1}{x^6}\right) = \log\left(1 + \frac{1}{x^6}\right). \] Thus, we can rewrite the integral as: \[ I = \int \frac{\sqrt{x^6 + 1} \cdot \log\left(1 + \frac{1}{x^6}\right)}{x^{10}} \, dx. \] ### Step 2: Substitution Let us make the substitution: \[ t = 1 + \frac{1}{x^6} \implies \frac{dt}{dx} = -\frac{6}{x^7} \implies dx = -\frac{x^7}{6} dt. \] From the substitution, we also have: \[ x^6 = \frac{1}{t - 1} \implies x^7 = \left(\frac{1}{t - 1}\right)^{7/6}. \] ### Step 3: Change of variables in the integral Now we can express the integral in terms of \(t\): \[ I = \int \sqrt{\frac{1}{t - 1} + 1} \cdot \log(t) \cdot \left(-\frac{x^7}{6}\right) \cdot \frac{1}{x^{10}} \, dt. \] Substituting \(x^7\) and simplifying gives: \[ I = -\frac{1}{6} \int \sqrt{\frac{1 + (t - 1)}{t - 1}} \cdot \log(t) \cdot dt. \] ### Step 4: Simplifying the square root The square root simplifies to: \[ \sqrt{t} \cdot \sqrt{\frac{1}{t - 1}}. \] ### Step 5: Integration by parts Using integration by parts, let: - \(u = \log(t)\) - \(dv = \sqrt{t} dt\) Then we can find \(du\) and \(v\) and apply the integration by parts formula: \[ I = uv - \int v \, du. \] ### Step 6: Final expression After performing the integration and simplifying, we arrive at: \[ I = -\frac{1}{6} \left( \frac{2}{3} t^{3/2} \log(t) - \frac{4}{3} t^{3/2} \right) + C. \] ### Conclusion Thus, we find that: \[ t = 1 + \frac{1}{x^6}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

intsqrt((logx)^2+3(logx)+1)/(x)dx=

x=(1+logt)/(t^(2)), y=(3+2logt)/(t)

int(1+logx)/(x(2+log x)(3+logx))dx

int_( where )^(-11)(1+x^(4))^(-(1)/(2))dx=-(1)/(2)((t^(5))/(5)-(2t^(3))/(3)+t)+c

4int(sqrt(a^(6)+x^(8)))/(x)dx is equalto sqrt(a^(6)+x^(8))+(a^(3))/(2)ln|(sqrt(a^(6)+x^(8))+a^(3))/(sqrt(a^(6)+x^(8))-a^(3))|+ca^(6)ln|(sqrt(a^(6)+x^(8))-a^(3))/(sqrt(a^(6)+x^(8))+a^(3))|+csqrt(a^(6)+x^(8))+(a^(3))/(2)ln|(sqrt(a^(6)+x^(8))-a^(3))/(sqrt(a^(6)+x^(8))+a^(3))|+c|(sqrt(a^(6)+x^(8))+a^(3))/(sqrt(a^(6)+x^(8))-a^(3))|+c

int(1)/(x^((1)/(3))+x^((1)/(4)))+(log(1+x^((1)/(6))))/(x^((1)/(3))+x^((1)/(2)))dx=

If x=(1+log t)/(t^(2)),y=(3+2log t)/(t), find (dy)/(dx)

(2x-1)/(3)+(3x+2)/(2)+7=(1)/(6)+(4x+3)/(6)

(2x-1)/(3)+(3x+2)/(2)+7=(1)/(6)+(4x+3)/(6)

Solve log_2(4xx3^x-6)-log_2(9^x-6)=1 .