Home
Class 12
MATHS
int(x^4(x^10-1))/((x^20+3x^10+1))dx=(1)/...

`int(x^4(x^10-1))/((x^20+3x^10+1))dx=(1)/(5)tan^(-1)(f(x)+(1)/(f(x)))`

A

`f(x)=x^(5)`

B

`f(x)=x^(6)`

C

`f(x)=x^(4)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int(x^(4))/(1+x^(10))dx

int x^10-1/x-1 dx

"If" int(dx)/((x^(2)-2x+10)^(2))=A("tan"^(-1)((x-1)/(3))+(f(x))/(x^(2)-2x+10))+C ,where, C is a constant of integration, then

int_(th x^(2)(x))^( If )((x+2)dx)/((x^(2)+3x+3)sqrt((x+1)))=(2)/(sqrt(3))[tan^(-1)((f(x)+1)/(sqrt(3)))+tan^(-1)((f(x)-1)/(sqrt(3)))]+c

int(2^(x+1)-5^(x-1))/(10^(x))dx

int(dx)/((sin x+4)(sin x-1))=(1)/((tan x)/(2)-1)+B tan^(-1)f(x)+c

If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx =(1)/(2)log_(e)|(sqrt(f(x))-1)/(sqrt(f(x))+1)|-tan^(-1)sqrt(f(x))+C, then The value of f(1) is

If int(x^(4)+1)/(x^(6)+1)dx=tan^(-1)f(x)-(2)/(3)tan^(-1)g(x)+C, then both f(x) and g(x) are odd functions f(x) is monotonic function f(x)=g(x) has no real roots int(f(x))/(g(x))dx=-(1)/(x)+(3)/(x^(3))+c

If inte^(x)(1+x^(2))/((1+x)^(2))dx=e^(x)f(x)+c , then f(x)=