Home
Class 12
MATHS
The value of int(cos^4xdx)/(sin^3x(sin^5...

The value of `int(cos^4xdx)/(sin^3x(sin^5x+cos^5x)^(3//5))=-(1)/(2)(1+g(x))^(2//5)+C` where g (x) is :

A

`tan^(5)x`

B

`cot^(5)x`

C

`sin^(5)x`

D

`cos^(5)x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{\cos^4 x \, dx}{\sin^3 x \left( \sin^5 x + \cos^5 x \right)^{3/5}} = -\frac{1}{2} \left( 1 + g(x) \right)^{2/5} + C \] we need to determine the function \( g(x) \). ### Step-by-Step Solution: 1. **Identify the Structure of the Integral**: The integral involves powers of sine and cosine, and we need to simplify the expression in the denominator. 2. **Substitution**: Let's consider the substitution \( g(x) = \cot^5 x \). This is a reasonable assumption because it relates to the powers of sine and cosine. 3. **Differentiate \( g(x) \)**: We differentiate \( g(x) \): \[ g'(x) = 5 \cot^4 x (-\csc^2 x) = -5 \cot^4 x \csc^2 x \] 4. **Substituting \( g(x) \) into the Integral**: We substitute \( g(x) \) back into the equation: \[ 1 + g(x) = 1 + \cot^5 x \] 5. **Rewrite the Integral**: The integral can be rewritten using our substitution: \[ \int \frac{\cos^4 x \, dx}{\sin^3 x \left( \sin^5 x + \cos^5 x \right)^{3/5}} = -\frac{1}{2} \left( 1 + \cot^5 x \right)^{2/5} + C \] 6. **Verify the Result**: To ensure that our choice of \( g(x) \) is correct, we can differentiate the right-hand side and check if it matches the left-hand side of the integral. ### Final Result: Thus, we find that \[ g(x) = \cot^5 x \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int(cos^(4)x)/(sin^(3)x(sin^(5)x+cos^(5)x)^((3)/(5)))dx

The value of int(cos^(3)x+cos^(5))/(sin^(2)x+sin^(5)x)dx

int sin^(5)x cos^(3)xdx

int sin^(5)x cos xdx

The value of int(cos^(3)x+cos^(5)x)/(sin^(2)x+sin^(4)x)dx is

The value of int sin^(3)x cos^(5)xdx equals

int sin^5 x cos xdx

int(sin^3x+sin^5x)/(cos^2x+cos^4x)dx