Home
Class 12
MATHS
Let f:[0,(pi)/(2)]toR be continuous and ...

Let `f:[0,(pi)/(2)]toR` be continuous and satisfy `f'(x)=(1)/(1+cosx)` for all `x in(0,(pi)/(2))`. If f(0)=3 then `f((pi)/(2))` has the value equal to :

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f\left(\frac{\pi}{2}\right) \) given that \( f'(x) = \frac{1}{1 + \cos x} \) and \( f(0) = 3 \). ### Step-by-Step Solution: 1. **Identify the given information:** We have: \[ f'(x) = \frac{1}{1 + \cos x} \] and \[ f(0) = 3. \] 2. **Rewrite the derivative using a trigonometric identity:** We know that: \[ 1 + \cos x = 2 \cos^2\left(\frac{x}{2}\right). \] Therefore, we can rewrite \( f'(x) \): \[ f'(x) = \frac{1}{2 \cos^2\left(\frac{x}{2}\right)} = \frac{1}{2} \sec^2\left(\frac{x}{2}\right). \] 3. **Integrate \( f'(x) \):** Now, we integrate \( f'(x) \): \[ f(x) = \int f'(x) \, dx = \int \frac{1}{2} \sec^2\left(\frac{x}{2}\right) \, dx. \] The integral of \( \sec^2(u) \) is \( \tan(u) \), where \( u = \frac{x}{2} \). Thus, \[ \int \sec^2\left(\frac{x}{2}\right) \, dx = 2 \tan\left(\frac{x}{2}\right) + C. \] Therefore, \[ f(x) = \frac{1}{2} \cdot 2 \tan\left(\frac{x}{2}\right) + C = \tan\left(\frac{x}{2}\right) + C. \] 4. **Use the initial condition to find \( C \):** We know \( f(0) = 3 \): \[ f(0) = \tan\left(0\right) + C = 0 + C = C. \] Thus, \( C = 3 \). 5. **Write the final expression for \( f(x) \):** Therefore, we have: \[ f(x) = \tan\left(\frac{x}{2}\right) + 3. \] 6. **Evaluate \( f\left(\frac{\pi}{2}\right) \):** Now, we calculate \( f\left(\frac{\pi}{2}\right) \): \[ f\left(\frac{\pi}{2}\right) = \tan\left(\frac{\pi}{4}\right) + 3 = 1 + 3 = 4. \] ### Final Answer: Thus, the value of \( f\left(\frac{\pi}{2}\right) \) is \( \boxed{4} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Let g(x)=f(tanx)+f(cotx),AAx in ((pi)/(2),pi). If f''(x)lt0,AAx in ((pi)/(2),pi), then

If the function y=f(x) satisfies f'(x)+f(x)cot x-2cos x=0,f((pi)/(2))=1 then f((pi)/(3)) is equal to

If f(x) = (tan(pi/4-x))/(cot2x), x != pi/4 , is continuous in (0, pi/2) , then f((pi)/(4)) is equal to

If f(x) is continuous at x = (pi)/2 , where f(x) = (sinx)^(1/(pi-2x)), "for" x != (pi)/2 , then f((pi)/(2)) =

If f(x) is continuous at x=pi/2 , where f(x)=(cos x )/(sqrt(1-sinx)) , for x!= pi/2 , then f(pi/2)=

If a continuous function f satisfies int_(0)^(f(x))t^(3)dt=x^(2)(1+x) for all x>=0 then f(2)

Let f(x)={[sin(pi x)/(2),0 =1] ,then check continuity at x=1

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

For f(x) =x^(4) +|x|, let I_(1)= int _(0)^(pi)f(cos x) dx and I_(2)= int_(0)^(pi//2) f(sin x ) dx "then" (I_(1))/(I_(2)) has the value equal to

Let f'(x)=3x^(2)sin((1)/(x))-x cos((1)/(x)), if x!=0,f(0)=0 and f((1)/(pi))=0 then