Home
Class 12
MATHS
Let int((1+x^4)dx)/((1-x^4)(3/2))=f(x)+C...

Let `int((1+x^4)dx)/((1-x^4)(3/2))=f(x)+C_(1)` where f(0)=0 and `int(f(x)dx=g(x)+C_(2)` with g(0)=0. If `g((1)/(sqrt2))=(pi)/(k)`. Find k.

Text Solution

Verified by Experts

The correct Answer is:
12
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=int(1)/((1+x^(2))^(3//2))dx and f(0)=0 then f(1)=

If int(dx)/(x^(2)+ax+1)=f(g(x))+c, then

Let int(x^((1)/(2)))/(sqrt(1-x^(3)))dx=(2)/(3)g(f(x))+c then

Let f(x),=int(x^(2))/((1+x^(2))(1+sqrt(1+x^(2))))dx and f(0),=0 then f(1) is

Let f(x)=2x+1 and g(x)=int(f(x))/(x^(2)(x+1)^(2))dx . If 6g(2)+1=0 then g(-(1)/(2)) is equal to

Letf(x)=x/((1+x^4)^(1/4))&g(x)=f(f(f(f(x)))) then int_0^(sqrt(2sqrt(5)))x^2g(x)dx is

If int(dx)/(x+x^(2011))=f(x)+C_(1) and int(x^(2009))/(1+x^(2010))dx=g(x)+C_(2) (where C_(1) and C_(2) are constants of integration).Let h(x)=f(x)+g(x) .If h(1)=0 then h(e) is equal to

If int(dx)/(x+x^(2011))=f(x)+C_(1) and int(x^(2009))/(1+x^(2010))dx=g(x)+C_(2) (where C_(1) and C_(2) are constants of integration).Let h(x)=f(x)+g(x) .If h(1)=0 then h(e) is equal to

Let int(dx)/(sqrt(x^(2)+1)-x)=f(x)+C such that f(0)=0 and C is the constant of integration, then the value of f(1) is