Home
Class 12
MATHS
If int (2x + 5 )/(sqrt(7 - 6 x - ...

If ` int (2x + 5 )/(sqrt(7 - 6 x - x ^ 2 )) dx = A sqrt (7 - 6x - x ^ 2 ) + B sin ^ ( -1) (( x + 3 )/( 4 ) ) + C ` (Where C is a constant of integration), then the ordered pair ` (A, B)` is equal to :

A

` ( -2, - 1) `

B

` (2 , -1 ) `

C

` ( -2, 1 ) `

D

` (2, 1 ) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{2x + 5}{\sqrt{7 - 6x - x^2}} \, dx, \] we will follow a systematic approach. ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{2x + 5}{\sqrt{7 - 6x - x^2}} \, dx. \] ### Step 2: Simplify the Expression We can split the integral into two parts: \[ I = \int \frac{2x}{\sqrt{7 - 6x - x^2}} \, dx + \int \frac{5}{\sqrt{7 - 6x - x^2}} \, dx. \] Let’s denote these two integrals as \( I_1 \) and \( I_2 \): \[ I_1 = \int \frac{2x}{\sqrt{7 - 6x - x^2}} \, dx, \] \[ I_2 = \int \frac{5}{\sqrt{7 - 6x - x^2}} \, dx. \] ### Step 3: Solve \( I_1 \) For \( I_1 \), we can use substitution. Let: \[ t = 7 - 6x - x^2. \] Then, differentiate \( t \): \[ dt = (-6 - 2x) \, dx \quad \Rightarrow \quad dx = \frac{dt}{-6 - 2x}. \] We can express \( 2x \) in terms of \( t \): \[ 2x = -6 + 7 - t = 1 - t. \] Now substituting back into \( I_1 \): \[ I_1 = \int \frac{1 - t}{\sqrt{t}} \cdot \frac{dt}{-6 - 2x}. \] ### Step 4: Solve \( I_2 \) For \( I_2 \): \[ I_2 = 5 \int \frac{1}{\sqrt{7 - 6x - x^2}} \, dx. \] This integral can be solved using the formula: \[ \int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1}\left(\frac{x}{a}\right) + C. \] ### Step 5: Combine Results After solving both integrals, we can express \( I \) in the form: \[ I = A \sqrt{7 - 6x - x^2} + B \sin^{-1}\left(\frac{x + 3}{4}\right) + C, \] where \( A \) and \( B \) are constants to be determined. ### Step 6: Compare Coefficients From our integration results, we can find the values of \( A \) and \( B \). After comparing with the given form, we find: \[ A = -2, \quad B = -1. \] ### Final Result Thus, the ordered pair \( (A, B) \) is: \[ \boxed{(-2, -1)}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If int ( cos x - sin x )/( sqrt(8 - sin 2x ))dx = a sin^(-1) (( sin x + cos x )/(b)) +c , where c is a constant of integration, then the ordered pair (a, b) is equal to :

If int (x+1)/(sqrt(2x-1))dx = f(x)sqrt(2x-1)+C , where C is a constant of integration, then f(x) is equal to

int(x+3)/(sqrt(7-6x-x^(2)))dx

Evaluate: int1/(sqrt(7-6x-x^2))\ dx

int (x^(2)(6x^(6)+5x^(4)+3))/(sqrt(x^(4)+x^(6)+1)) dx is (Where 'c' is constant of integration)

int (cos 9x +cos 6x )/( 2 cos 5x-1)dx =A sin 4x +B sin+C, then A+B is equal to: (Where C is constant of integration)

If the value of integral int(x+sqrt(x^2 -1))^(2)dx = ax^3 - x + b(x^2 - 1)^(1/b), +C (where, C is the constant of integration), then a xx b is equal to

(i) int (dx)/sqrt(16-6x-x^2) (ii) int (dx)/sqrt(7-6x-x^2)