Home
Class 12
MATHS
The value of int (tan x )/(tan ^(2) x + ...

The value of `int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan ^(-1) ((2 tan x+1)/(sqrtA))+C` Then the value of A is:

A

` (-2,3 ) `

B

` ( -2, 1 ) `

C

` (2, 1 ) `

D

` (2, 3 ) `

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

int(2tan x)/(1+tan^(2)x)dx

int(1-tan x)/(1+tan x)dx

Evaluate: int(1-tan x)/(1+tan x)dx

Evaluate: int(1+tan x)/(1-tan x)dx

Evaluate: int(1-tan x)/(1+tan x)dx

int(tan x)/(tan^(2)x+tan x+1)dx=x-(k)/(sqrt(A))tan^(-1)((k tan x+1)/(sqrt(A)))+C, then the ordered pir of (K,A) is equal to : (A) (2,1)(B)(-2,3)(C)(2,3)(D)(-2,1)

" (.) "int(tan x)/(1+tan x)dx

int(1+tan^2x)/(1-tan^2x)dx=