Home
Class 12
MATHS
The value of the integral int(0) ^(...

The value of the integral ` int_(0) ^(pi//2) sin ^3 x dx ` is :

A

` (3)/(8) pi `

B

0

C

` (3 )/(16) pi `

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\frac{\pi}{2}} \sin^3 x \, dx \), we can use the reduction formula or a trigonometric identity. Here’s a step-by-step solution: ### Step 1: Use the identity for \( \sin^3 x \) We can express \( \sin^3 x \) in terms of \( \sin x \) and \( \cos x \): \[ \sin^3 x = \sin x (1 - \cos^2 x) = \sin x - \sin x \cos^2 x \] ### Step 2: Rewrite the integral Now we can rewrite the integral: \[ \int_{0}^{\frac{\pi}{2}} \sin^3 x \, dx = \int_{0}^{\frac{\pi}{2}} \sin x \, dx - \int_{0}^{\frac{\pi}{2}} \sin x \cos^2 x \, dx \] ### Step 3: Evaluate the first integral The first integral \( \int_{0}^{\frac{\pi}{2}} \sin x \, dx \) is straightforward: \[ \int \sin x \, dx = -\cos x \quad \text{(evaluating from 0 to } \frac{\pi}{2}\text{)} \] \[ = -\cos\left(\frac{\pi}{2}\right) + \cos(0) = 0 + 1 = 1 \] ### Step 4: Evaluate the second integral For the second integral \( \int_{0}^{\frac{\pi}{2}} \sin x \cos^2 x \, dx \), we can use the substitution \( u = \cos x \), which gives \( du = -\sin x \, dx \). Changing the limits accordingly: - When \( x = 0 \), \( u = 1 \) - When \( x = \frac{\pi}{2} \), \( u = 0 \) Thus, the integral becomes: \[ \int_{0}^{\frac{\pi}{2}} \sin x \cos^2 x \, dx = -\int_{1}^{0} u^2 \, du = \int_{0}^{1} u^2 \, du \] \[ = \left[ \frac{u^3}{3} \right]_{0}^{1} = \frac{1^3}{3} - 0 = \frac{1}{3} \] ### Step 5: Combine the results Now, substituting back into our equation: \[ \int_{0}^{\frac{\pi}{2}} \sin^3 x \, dx = 1 - \frac{1}{3} = \frac{2}{3} \] ### Final Answer Thus, the value of the integral \( \int_{0}^{\frac{\pi}{2}} \sin^3 x \, dx \) is: \[ \boxed{\frac{2}{3}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int _(0)^(pi//2) sin ^(5) x dx is

The value of the integral int_(0)^(pi//2) sin^(6) x dx , is

The value of the integral int_(0)^(pi) | sin 2x| dx is

The value of the integral int_(0)^(pi//4) sin^(-4)x dx , is

The value of the integral int_(0)^(pi//2) |sin x-cos x|dx , is

The value of the integral int_(0)^(pi)x log sin x dx is

The value of the integral int _(0)^(pi//2) log | tan x| dx is

The value of the integral int_(0)^(pi)(1-|sin 8x|)dx is

The value of the definite integral int_(0)^(pi//2)sin x sin 2x sin 3x dx is equal to